INITIAL BOUNDS FOR A CLASS OF bi–UNIVALENT FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH CHEBYSHEV POLYNOMIALS

M. K. AOUF, A. O. MOSTAFA, F. Y. AL-QUHALI

Abstract. In this paper, we obtain initial coefficient bounds for functions belong to a subclass of bi–univalent functions by using the Salagean differential operator and Chebyshev polynomials and also we find Fekete-Szego inequalities for functions in this class.

1. Introduction

Let S be the class of analytic and univalent functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, z \in \mathbb{U} = \{z : z \in \mathbb{C} : |z| < 1 \}. \quad (1)$$

For f and g analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U} ($f(z) \prec g(z)$) if there exists an analytic Schwarz function $w(z)$ in \mathbb{U}, with $w(0) = 0$ and $|w(z)| < 1 \ (z \in \mathbb{U})$, such that $f(z) = g(w(z))$ (see [19]).

Indeed, it is known that

$$f(z) \prec g(z) \quad (z \in \mathbb{U}) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(\mathbb{U}) \subset g(\mathbb{U}),$$

and if g is univalent in \mathbb{U}, then

$$f(z) \prec g(z) \quad (z \in \mathbb{U}) \iff f(0) = g(0) \quad \text{and} \quad f(\mathbb{U}) \subset g(\mathbb{U}).$$

It is well known (see Duren [13]) that every function $f \in S$ has an inverse map f^{-1}, defined by

$$f^{-1}(f(z)) = z \quad (z \in \mathbb{U}),$$

and

$$f(f^{-1}(w)) = w \quad (|w| < r_o(f); \ r_o(f) \geq \frac{1}{4}).$$

In fact, the inverse function $g = f^{-1}$ is given by

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \ldots \quad (2)$$
A function $f \in S$ is said to be bi-univalent function in U if both f and f^{-1} are univalent in U. Denote by Δ the class of bi-univalent functions in U. For a history and examples of functions which are (or which are not) in the class Δ, together with various other properties one can refer to [1, 9, 11, 15, 17, 21, 22, 24, 27].

The Chebyshev polynomials of the first and second kinds are well known and defined by (see [2, 10, 12, 14, 16, 18])

$$T_k(t) = \cos kt \quad \text{and} \quad U_k(t) = \frac{\sin(k+1)t}{\sin \theta} \quad (-1 < t < 1),$$

where the degree of the polynomial is k and $t = \cos \theta$.

Consider the function

$$H(z, t) = \frac{1}{1 - 2zt + z^2}.$$

Note that if $t = \cos \alpha$, $\alpha \in \left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$, then for all $z \in U$

$$H(z, t) = 1 + \sum_{k=1}^{\infty} \frac{\sin(k+1)\alpha}{\sin \alpha} z^k$$

$$= 1 + 2 \cos \alpha + (3 \cos^2 \alpha - \sin^2 \alpha) z^2 + \ldots. \quad (3)$$

Thus, we have [26]

$$H(z, t) = 1 + U_1(t)z + U_2(t)z^2 + \ldots \quad (z \in U, \; t \in (-1, 1)), \quad (4)$$

where $U_{k-1} = \frac{\sin(k \arccos t)}{\sqrt{1 - t^2}}$, for $k \in \mathbb{N} = \{1, 2, \ldots\}$, are the second kind of the Chebyshev polynomials. Also, it is known that

$$U_k(t) = 2tU_{k-1}(t) - U_{k-2}(t), \quad (5)$$

and

$$U_1(t) = 2t, \quad U_2(t) = 4t^2 - 1, \quad U_3(t) = 8t^3 - 4t, \quad U_4(t) = 16t^4 - 12t^2 + 1, \ldots \quad (6)$$

The Chebyshev polynomials $T_k(t)$, $t \in [-1, 1]$, of the first kind have the generating function of the form

$$\sum_{k=0}^{\infty} T_k(t) z^k = \frac{1 - tz}{1 - 2tz + z^2} \quad (z \in U). \quad (7)$$

The first kind of Chebyshev polynomial $T_k(t)$ and second kind of Chebyshev polynomial $U_k(t)$ are connected by:

$$\frac{dT_k(t)}{dt} = kU_{k-1}(t); \quad T_k(t) = U_k(t) - tU_{k-1}(t); \quad 2T_k(t) = U_k(t) - U_{k-2}(t). \quad (8)$$

For $f(z) \in S$, the Salagean operator is defined by (see [23] and [3, 4, 5, 6, 7, 8])

$$D^1 f(z) = Df(z) = zf'(z),$$

$$\vdots$$

$$D^n f(z) = D(D^{n-1} f(z)) = z(D^{n-1} f(z))',$$

$$= z + \sum_{k=2}^{\infty} k^n a_k z^k \quad (n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, \ldots\}). \quad (9)$$
By using the Salagean differential operator for g of the form (2), Vijaya et al. [25] (also see [20]) defined $D^n g(w)$ as follows:

$$D^n g(w) = w - a_2 2^n w^2 + (2a_2^2 - a_3)3^n w^3 + \ldots . \quad (10)$$

Definition 1. For $\alpha \geq 0, b \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and $t \in (-1, 1)$, a function $f \in \Delta$ of form (1) is said to be in the class $R^n_\Delta (b, \alpha, t)$ if the following subordinations hold:

$$1 + \frac{1}{b} \left[\frac{z(D^n f(z))'' + \alpha z^2 (D^n f(z))'''}{(1 - \alpha)D^n f(z) + \alpha z(D^n f(z))''} - 1 \right] \prec H(z, t) = \frac{1}{1 - 2tz + z^2}, \quad (11)$$

and

$$1 + \frac{1}{b} \left[\frac{z(D^n g(w))' + \alpha z^2 (D^n g(w))''}{(1 - \alpha)D^n g(w) + \alpha z(D^n g(w))'} - 1 \right] \prec H(w, t) = \frac{1}{1 - 2tw + w^2}, \quad (12)$$

where $z, w \in \mathbb{U}$ and g is given by (2).

For suitable choices of n, α and b, we obtain:

(i) $R^n_\Delta (b, \alpha, t) = R^n_\Delta (b, \alpha, t)$, where

$$1 + \frac{1}{b} \left[\frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha)f(z) + \alpha zf'(z)} - 1 \right] \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$

and

$$1 + \frac{1}{b} \left[\frac{zg'(w) + \alpha z^2 g''(w)}{(1 - \alpha)g(w) + \alpha zg'(w)} - 1 \right] \prec H(w, t) = \frac{1}{1 - 2tw + w^2},$$

(ii) $R^n_\Delta (0, 0, t) = R^n_\Delta (b, t)$, if

$$1 + \frac{1}{b} \left[\frac{z(D^n f(z))'}{D^n f(z)} - 1 \right] \prec H(z, t) = \frac{1}{1 - 2tz + z^2};$$

and

$$1 + \frac{1}{b} \left[\frac{z(D^n g(w))'}{D^n g(w)} - 1 \right] \prec H(w, t) = \frac{1}{1 - 2tw + w^2},$$

(iii) $R^n_\Delta (b, 1, t) = R^n_\Delta (b, t)$, if

$$1 + \frac{1}{b} \left[\frac{z(D^n f(z))'}{(1 - \alpha)f(z) + \alpha zf'(z)} - 1 \right] \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$

and

$$1 + \frac{1}{b} \left[\frac{z(D^n g(w))'}{(1 - \alpha)g(w) + \alpha zg'(w)} - 1 \right] \prec H(w, t) = \frac{1}{1 - 2tw + w^2},$$

(iv) $R^n_\Delta (1, \alpha, t) = R^n_\Delta (\alpha, t)$, if

$$\frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha)f(z) + \alpha zf'(z)} \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$

and

$$\frac{zg'(w) + \alpha z^2 g''(w)}{(1 - \alpha)g(w) + \alpha zg'(w)} \prec H(w, t) = \frac{1}{1 - 2tw + w^2},$$

(v) $R^n_\Delta (1, 0, t) = R^n_\Delta (t)$, if

$$\frac{z(D^n f(z))'}{D^n f(z)} \prec H(z, t) = \frac{1}{1 - 2tz + z^2}, \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$

$$\frac{z(D^n f(z))'}{D^n f(z)} \prec H(z, t) = \frac{1}{1 - 2tz + z^2}, \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$

$$\frac{z(D^n f(z))'}{D^n f(z)} \prec H(z, t) = \frac{1}{1 - 2tz + z^2}, \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$

$$\frac{z(D^n f(z))'}{D^n f(z)} \prec H(z, t) = \frac{1}{1 - 2tz + z^2}, \prec H(z, t) = \frac{1}{1 - 2tz + z^2},$$
and \[\frac{z(D^n g(w))'}{D^n g(w)} < H(w, t) = \frac{1}{1 - 2tw + w^2}. \]

(vi) \[R_{A}^n(1, 1, t) = R_{A}^n(t), \]

if

\[\frac{z(D^n f(z))''}{(D^n f(z))'} < H(z, t) = \frac{1}{1 - 2tz + z^2}. \]

and

\[\frac{z(D^n g(w))''}{(D^n g(w))'} < H(w, t) = \frac{1}{1 - 2tw + w^2}. \]

(vii) \[R_{A}^n((1 - \lambda)e^{-i\theta} \cos \theta, \alpha, t) = R_{A}^n(\lambda, \theta, \alpha, t) \quad (0 \leq \lambda < 1, |\theta| < \frac{\pi}{2}), \]

if

\[e^{i\theta} \left[\frac{z(D^n f(z))' + az^2(D^n f(z))''}{(1 - \alpha)D^n f(z) + az(D^n f(z))'} \right] < H(z, t)(1 - \lambda) \cos \theta + \lambda \cos \theta + i \sin \theta, \]

and

\[e^{i\theta} \left[\frac{z(D^n g(w))' + az^2(D^n g(w))''}{(1 - \alpha)D^n g(w) + az(D^n g(w))'} \right] < H(w, t)(1 - \lambda) \cos \theta + \lambda \cos \theta + i \sin \theta. \]

In this paper, we obtain the initial coefficients bounds and Fekete-Szego problem for functions in the class \(R_{A}^n(b, \alpha, t). \)

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS \(R_{A}^n(b, \alpha, t) \)

Unless indicated, we assume that \(\alpha \geq 0, t \in (-1, 1), f \) given by (1.1) and \(b \in \mathbb{C}. \)

Theorem 1. Let \(f \in R_{A}^n(b, \alpha, t). \) Then

\[|a_2| \leq \frac{|b|2t\sqrt{\pi}}{\sqrt{\{4t^2\{b(2+4\alpha)^{3n}-(1+\alpha)^22^{2n}\}-(1+\alpha)^22^{2n}\}+\{1+3(1+\alpha)^22^{2n}\}}} \quad (13) \]

and

\[|a_3| \leq \frac{4t^2|b|^2}{(1+\alpha)^22^{2n}} + \frac{2t|b|}{(2+4\alpha)^3n}. \quad (14) \]

Proof. Let \(f \in R_{A}^n(b, \alpha, t) \) and \(g = f^{-1}. \) From (11) and (12), we have

\[1 + \frac{1}{b} \left[\frac{z(D^n f(z))'}{(1 - \alpha)D^n f(z) + az(D^n f(z))'} \right] = 1 + U_1(t)p(z) + U_2(t)p^2(z) + \ldots \quad (15) \]

and

\[1 + \frac{1}{b} \left[\frac{z(D^n g(w))'}{(1 - \alpha)D^n g(w) + az(D^n g(w))'} \right] = 1 + U_1(t)q(w) + U_2(t)q^2(w) + \ldots \quad (16) \]

for some analytic functions

\[p(z) = c_1z + c_2z^2 + c_3z^3 + \ldots \quad (z \in \mathbb{U}), \]

\[q(w) = d_1w + d_2w^2 + d_3w^3 + \ldots \quad (w \in \mathbb{U}), \]

such that \(p(0) = q(0) = 0, \) \(|p(z)| < 1 \quad (z \in \mathbb{U}) \) and \(|q(w)| < 1 \quad (w \in \mathbb{U}). \) It is well known that if \(|p(z)| < 1 \) and \(|q(w)| < 1, \) then

\[|c_j| \leq 1 \quad \text{and} \quad |d_j| \leq 1 \quad \text{for all} \quad j \in \mathbb{N}. \quad (19) \]
From (15) — (18), we have
\[
\frac{1}{b} \left[\frac{z(D^n f(z))' + \alpha z^2(D^n f(z))''}{(1 - \alpha)D^n f(z) + \alpha z(D^n f(z))'} - 1 \right] = \frac{1}{b} \left\{ (1 + \alpha) 2^n a_2 z + \left[(2 + 4\alpha) 3^n a_3 - (1 + \alpha)^2 2^{2n} a_2^2 \right] z^2 + ... \right\} = U_1(t)c_1 z + \left[U_1(t)c_2 + U_2(t)c_1^2 \right] z^2 + ...
\quad \text{(20)}
\]
and
\[
\frac{1}{b} \left[\frac{z(D^n g(w))' + \alpha z^2(D^n g(w))''}{(1 - \alpha)D^n g(w) + \alpha z(D^n g(w))'} - 1 \right] = \frac{1}{b} \left\{ -(1 + \alpha) 2^n a_2 w + \right\} \left[(2 + 4\alpha) 3^n a_3 - (1 + \alpha)^2 2^{2n} a_2^2 \right] w^2 + ...
ight\} = U_1(t)d_1 w + \left[U_1(t)d_2 + U_2(t)d_1^2 \right] w^2 + ...
\quad \text{. (21)}
\]
Equating the coefficients in (20) and (21) we get
\[
\frac{1}{b} (1 + \alpha) 2^n a_2 = U_1(t)c_1, \quad \text{(22)}
\]
\[
\frac{1}{b} \left[(2 + 4\alpha) 3^n a_3 - (1 + \alpha)^2 2^{2n} a_2^2 \right] = U_1(t)c_2 + U_2(t)c_1^2, \quad \text{(23)}
\]
and
\[
\frac{1}{b} \left\{ (4 + 8\alpha) 3^n - (1 + \alpha)^2 2^{2n} a_2^2 \right\} = U_1(t)d_2 + U_2(t)d_1. \quad \text{(25)}
\]
From (22) and (24) we obtain
\[
c_1 = -d_1 \quad \text{(26)}
\]
and
\[
\frac{1}{b^2} (1 + \alpha)^2 2^{2n+1} a_2^2 = U_1^2(t) \left(c_1^2 + d_1^2 \right). \quad \text{(27)}
\]
Also, (23) and (25) yield
\[
\frac{1}{b} \left[(4 + 8\alpha) 3^n - (1 + \alpha)^2 2^{2n+1} \right] a_2^2 = U_1(t) \left(c_2 + d_2 \right) + U_2(t) \left(c_1^2 + d_1^2 \right), \quad \text{(28)}
\]
which by (??), leads to
\[
\left[(4 + 8\alpha) 3^n - (1 + \alpha)^2 2^{2n+1} - \frac{U_2(t)2^{2n+1}}{bU_1^2(t)} (1 + \alpha)^2 \right] a_2^2 = bU_1(t) \left(c_2 + d_2 \right). \quad \text{(29)}
\]
From (6), (19) and (29), we have (13).
Next, by subtracting (??) from (23), we have
\[
\frac{2}{b} (2 + 4\alpha) 3^n (a_3 - a_2^2) = U_1(t) \left(c_2 - d_2 \right) + U_2(t) \left(c_1^2 - d_1^2 \right). \quad \text{(30)}
\]
Further, in view of (26), we obtain
\[
a_3 = a_2^2 + \frac{bU_1(t)}{2(2 + 4\alpha) 3^n} (c_2 - d_2). \quad \text{(30)}
\]
Hence using (27) and applying (6), we get (14).
This completes the proof of Theorem 1.

Taking \(n = 0 \) in Theorem 1, we get the following consequence.

Corollary 1. Let \(f \in \Delta \) be in the class \(R_\Delta (b, \alpha, t) \). Then

\[
|a_2| \leq \frac{|b| 2|\pi|}{\sqrt{|\{4t^2 \{b[(2+4\alpha)^2-(1+\alpha)^2]-[(1+\alpha)^2+(1+\alpha)^2]\}\}|},
\]

and

\[
|a_3| \leq \frac{4t^2 |b|^2}{(1+\alpha)^2} + \frac{2t |b|}{(2+4\alpha)}.
\]

Taking \(\alpha = 1 \) in Corollary 1, we get the following consequence.

Corollary 2. Let \(f \in \Delta \) be in the class \(R_\Delta (b, t) \). Then

\[
|a_2| \leq \frac{|b| 2|\pi|}{\sqrt{|t^2[2(2+4\alpha)+4\alpha]-1|}},
\]

and

\[
|a_3| \leq t^2 |b|^2 + \frac{t |b|}{3}.
\]

Taking \(b = e^{-i\theta}(1-\lambda) \cos \theta \) \((0 \leq \lambda < 1, |\theta| < \frac{\pi}{2})\) in Corollary 2, we get the following consequence.

Corollary 3. Let \(f \in \Delta \) be in the class \(R_\Delta (\lambda, \theta, t) \). Then

\[
|a_2| \leq \frac{t|\pi| (1-\lambda) \cos \theta}{\sqrt{|t^2[2-\cos \theta]-4|}},
\]

and

\[
|a_3| \leq t^2 (1-\lambda)^2 \cos^2 \theta + \frac{t(1-\lambda) \cos \theta}{3}.
\]

Taking \(\lambda = 0 \) in Corollary 3, we get the following consequence.

Corollary 4. Let \(f \in \Delta \) be in the class \(R_\Delta (\theta, t) \). Then

\[
|a_2| \leq \frac{t|\pi| \cos \theta}{\sqrt{|t^2[2 \cos \theta]-4|}},
\]

and

\[
|a_3| \leq t^2 \cos^2 \theta + \frac{t \cos \theta}{3}.
\]

3. FEKETE- SZEGO INEQUALITIES FOR THE CLASS \(R_\Delta^w (b, \alpha, t) \)

Theorem 2. If \(f \in R_\Delta^w (b, \alpha, t) \) and \(\xi \in \mathbb{R} \), then

\[
|a_3 - \xi a_2^2| \leq \begin{cases}
\frac{2b|t|}{(2+4\alpha)^3 \pi}, & |\xi - 1| \leq k \\
\frac{8|b|^2 |\xi - 1|^3}{|\{4t^2 \{b[(2+4\alpha)^3-2(1+\alpha)]^2-2(1+\alpha)^2 \}+(1+\alpha)^2 \}^2|}, & |\xi - 1| \geq k,
\end{cases}
\]

where \(k = \frac{|\{4t^2 \{b[(2+4\alpha)^3-(1+\alpha)^2]^2-2(1+\alpha)^2 \}+(1+\alpha)^2 \}^2|}{4t^2 |b[(2+4\alpha)^3]-1|} \).

Proof. From (29) and (30)

\[
(a_3 - \xi a_2^2) = (1-\xi) \left[\frac{b^2 U_1^2(t)(c_2 - d_2)}{M_1^2(t)(4+8a^3)/3 -(1+\alpha)^2 2^{n+1}} - U_2(t)(1+\alpha)^2 2^{n+1}c_2 + \frac{b U_1^2(t)}{2(2+4\alpha)^3} \right] + \frac{b U_1^2(t)}{2(2+4\alpha)^3} (c_2 - d_2)
\]

\[
= b U_1^2(t) \left[\left(h(\xi) + \frac{1}{2(2+4\alpha)^3} \right) c_2 + \left(h(\xi) - \frac{1}{2(2+4\alpha)^3} \right) d_2 \right],
\]

where

\[
h(\xi) = \frac{b(1-\xi)U_1^2(t)}{b U_1^2(t)(4+8\alpha)^3 - (1+\alpha)^2 2^{n+1} - U_2(t)(1+\alpha)^2 2^{n+1}}.
\]
Then, by taking the modulus of (32) and considering (6), we have

\[
|a_3 - \xi a_2^2| \leq \begin{cases}
\frac{2|b|}{(2+4\alpha)^3}, & |h(\xi)| \leq \frac{1}{(2+4\alpha)^3} \\
\frac{4|b| |h(\xi)| t,} & |h(\xi)| \geq \frac{1}{(2+4\alpha)^3}.
\end{cases}
\]

This completes the proof of Theorem 2.

Taking \(\xi = 1 \) in Theorem 2, we get the following consequence.

Corollary 5. Let the function \(f \in \Delta \) given by (1) be in the class \(R^\alpha_\Delta(b, \alpha, t) \). Then

\[
|a_3 - a_2^2| \leq \frac{2|b| t}{(2 + 4\alpha)^3}.
\]

Taking \(\alpha = 1 \) and \(n = 0 \) in Corollary 5, we get the following consequence.

Corollary 6. For \(t \in (-1, 1) \), let the function \(f \in \Delta \) given by (1) be in the class \(R_\Delta(b, t) \). Then

\[
|a_3 - a_2^2| \leq \frac{t|b|}{3}.
\]

Taking \(b = e^{-it}(1 - \lambda) \cos \theta \) \((0 \leq \lambda < 1, |\theta| < \frac{\pi}{2})\) in Corollary 6, we get the following consequence.

Corollary 7. For \(t \in (-1, 1) \), let the function \(f \in \Delta \) given by (1) be in the class \(R_\Delta(\lambda, \theta, t) \). Then

\[
|a_3 - a_2^2| \leq \frac{t(1 - \lambda) \cos \theta}{3}.
\]

Taking \(\lambda = 0 \) in Corollary 7, we get the following consequence.

Corollary 8. For \(t \in (-1, 1) \), let the function \(f \in \Delta \) given by (1) be in the class \(R_\Delta(\theta, t) \). Then

\[
|a_3 - a_2^2| \leq \frac{t \cos \theta}{3}.
\]

Acknowledgments

The authors express their sincere thanks to the referee for his valuable comments and suggestions.

References

M. K. AOUF, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA 35516, EGYPT.
E-mail address: mkaouf127@yahoo.com

A. O. MOSTAFA, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA 35516, EGYPT.
E-mail address: adelaege254@yahoo.com

F. Y. AL-QUHALI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA 35516, EGYPT.
E-mail address: fyalquhalis89@gmail.com