NOTE ON GENERALIZATIONS OF A SYMMETRIC q-SERIES IDENTITY

XUE-FANG WANG, JIAN CAO

Dedicated to Professor G.E. Andrews on the occasion of his 80th birthday

ABSTRACT. The main object of this paper is to generalize a symmetric identity which is given in a recent work [Discrete Math. 339 (2016), 2994–2997.] by the method of q-difference equation. In addition, we generalize symmetric identity by fractional integral. Moreover, we generalize symmetric identity by moment integrals. Finally, we generalize symmetric identity by generating function for Al-Salam–Carlitz polynomial $\Phi^{(a,b)}_n(x,y|q)$.

1. Introduction

In this paper, we follow the notations and terminology in [16] and suppose that $0 < q < 1$. We first show a list of various definitions and notations in q-calculus which are useful to understand the subject of this paper. The basic hypergeometric series ϕ_s

$$\phi_s\left[a_1, a_2, \ldots, a_r \mid b_1, b_2, \ldots, b_s \mid q, z \right] = \sum_{n=0}^{\infty} \frac{(a_1, a_2, \ldots, a_r; q)_n}{(q, b_1, b_2, \ldots, b_s; q)_n} \left[(-1)^n q \right]^{1+z-r} z^n,$$

converges absolutely for all z if $r \leq s$ and for $|z| < 1$ if $r = s + 1$ and for terminating. The q-series and its compact factorials are defined respectively by

$$(a; q)_0 = 1, \quad (a; q)_n = \prod_{k=0}^{n-1} (1 - a q^k), \quad (a; q)_\infty = \prod_{k=0}^{\infty} (1 - a q^k),$$

where a is a complex variable. For convenience, we always assume $0 < q < 1$ in the paper, $(a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n$, where m is a positive integer and n is a non-negative integer or ∞.

In [9, 10], Chen and Liu introduced two q-exponential operators

$$\mathcal{T}(b D_a) = \sum_{n=0}^{\infty} \frac{1}{(q; q)_n} (b D_a)^n, \quad \mathcal{E}(b \theta_a) = \sum_{n=0}^{\infty} \frac{q^{(n)}}{(q; q)_n} (b \theta_a)^n.$$
The Rogers–Szegő polynomials [1] are given by

\[h_n(b, c|q) = \sum_{k=0}^{n} \binom{n}{k} b^k c^{n-k}, \quad \text{and} \quad g_n(b, c|q) = \sum_{k=0}^{n} \binom{n}{k} q^{k(k-n)} b^k c^{n-k}. \] (3)

The Al-Salam–Carlitz polynomials [6, Eq. (4.4)]

\[\Phi_n^{(a)}(b, c|q) = \sum_{k=0}^{n} \binom{n}{k} (a; q)_k b^k c^{n-k}, \quad \text{and} \quad \Psi_n^{(a)}(b, c|q) = \sum_{k=0}^{n} \binom{n}{k} (-1)^k q^{k^2} \left(\frac{1}{a} \right)_k (ab)^k c^{n-k}. \] (4)

The Al-Salam–Carlitz polynomials reduce to the Rogers–Szegő polynomials with \(a = 0 \).

The Rogers–Szegő polynomials play important roles in the theory of orthogonal polynomials. Liu [18, 19] obtained several important results by the following \(q \)-difference equations. Liu and Zeng [23] studied relations between \(q \)-difference equations and \(q \)-orthogonal polynomials. For more information, please refer to [3, 12, 13, 14, 15, 17, 20, 21, 22, 27, 29, 30, 31, 32, 33].

Proposition 1. Let \(f(a, b) \) be a two-variable analytic function at \((0, 0) \in \mathbb{C}^2\). Then

(A) \(f \) can be expanded in terms of \(h_n(a, b|q) \) if and only if \(f \) satisfies the functional equation

\[bf(aq, b) - af(a, bq) = (b - a) f(a, b). \] (5)

(B) \(f \) can be expanded in terms of \(g_n(a, b|q) \) if and only if \(f \) satisfies the functional equation

\[af(aq, b) - bf(a, bq) = (a - b) f(aq, bq). \] (6)

In [4], Andrews gave a wonderful introduction of Ramanujan’s “lost” notebook, and listed some interesting identities contained therein. One of which is the following beautiful symmetric identity. Where if

\[f(\alpha, \beta) := \frac{1}{1 - \alpha} + \sum_{n \geq 1} \frac{\beta^n}{(1 - \alpha x^n)(1 - \alpha x^{n-1} y)(1 - \alpha x^{n-2} y^2) \cdots (1 - \alpha y^n)}. \]

Then

\[f(\alpha, \beta) = f(\beta, \alpha). \]

The identity we present here is a refinement of the case where \(x = q, y = q^2 \).

Then A.E. Patkowski [25] obtained the following symmetric \(q \)-series identity.

Proposition 2 ([25, Eq. (1.3)]). We have, for arbitrary \(a, b \), and \(|b| < 1, \ |t| < 1, \)

\[\sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_n t^n}{(bq^n; q)_{n+1}} = \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_n b^n}{(tq^n; q)_{n+1}}. \] (7)

In this paper, we first generalize this symmetric \(q \)-series identity by the method of \(q \)-difference equation.
Theorem 3. For arbitrary $|a| < 1$, $|b| < 1$ and $|t| < 1$, we have
\[
\sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_{n} q^{n}}{(tq^n; q)_{n+1}} h_n(c, b|q) = \sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_{n} a^n}{(bq^n; q)_{n+1}} \sum_{k=0}^{n} \frac{(q^n, bq^n; q)_k (-acq^{2n+1})^k}{(q, -abq^{n+1}, bq^{2n+1}; q)_k} 2\phi_1 \left[\frac{q^{n+1}, 0}{bq^{2n+1+k}; q, cq^n} \right],
\]
(8)
\[
\sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_{n} g_n(c, b|q)}{(tq^n; q)_{n+1}} = \sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_{n} a^n}{(bq^n; q)_{n+1}} \sum_{k=0}^{n} \frac{(-aq, 1/(bq^{2n}); q)_k}{(q, 1/(abq^{2n}), 1/(bq^{2n-1}); q)_k} \left(\frac{cq^{n+1}}{b} \right)^k \times \sum_{n=0}^{\infty} \frac{(q^{n+1}, q)_{n}}{(q^{k+1-n}/b; q)_n} q^{(n+k)(n+k)} (c/b)^n.
\]
(9)

Proof of Theorem 3. Denoting the LHS of equation (8) can be written by
\[
f(b, c) = \sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_{n} a^n}{(bq^n; q)_{n+1}} \sum_{k=0}^{n} \frac{(q^n, bq^n; q)_k (-acq^{2n+1})^k}{(q, -abq^{n+1}, bq^{2n+1}; q)_k} 2\phi_1 \left[\frac{q^{n+1}, 0}{bq^{2n+1+k}; q, cq^n} \right]
\]
\[
= \sum_{n=0}^{\infty} \frac{(-abq^{n+1}, bq^{2n+1}; q)_{n} a^n}{(-abq^{2n+1}, bq^n; q)_\infty} \sum_{k=0}^{n} \frac{(q^n, bq^n; q)_k (-acq^{2n+1})^k}{(q, -abq^{n+1}, bq^{2n+1}; q)_k} 2\phi_1 \left[\frac{q^{n+1}, 0}{bq^{2n+1+k}; q, cq^n} \right]
\]
\[
= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{0}^{\infty} \frac{c^k}{(q; q)_k} D_b^k \left(\frac{(-abq^{n+1}, bq^{2n+1}; q)_{\infty}}{(-abq^{2n+1}, bq^n; q)_\infty} \right)
\]
\[
= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{0}^{\infty} \frac{c^k}{(q; q)_k} D_b^k \left(\frac{(-atq^{n+1}; q)_{n} b^n}{(tq^n; q)_{n+1}} \right).
\]
By using equation (7), we have
\[
f(b, c) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{c^k}{(q; q)_k} D_b^k \left(\frac{(-atq^{n+1}; q)_{n} b^n}{(tq^n; q)_{n+1}} \right)
\]
\[
= \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_{n} b^n}{(tq^n; q)_{n+1}} \sum_{k=0}^{\infty} \frac{c^k}{(q; q)_k} D_b^k (b^n).
\]
We can verify that $f(a, b, c)$ satisfies equation (5). Then, we have
\[
f(b, c) = \sum_{n=0}^{\infty} u_n h_n(c, b|q),
\]
then, we have
\[
f(b, 0) = \sum_{n=0}^{\infty} u_n b^n = \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_{n} b^n}{(tq^n; q)_{n+1}}.
\]
Hence
\[
f(b, c) = \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_{n} h_n(c, b|q)}{(tq^n; q)_{n+1}}.
\]
Using the same way, we gain the equation (9). The proof is complete. □

2. Fractional q-integrals for a symmetric q-series identity

In this section, we use the fractional q-integrals to deduce a new identity for a symmetric q-series. For more information, please refer to [2, 8, 26].
The q-gamma function is defined by [16]

$$
\Gamma_q(x) = \frac{(q^x q)_\infty}{(q^\infty q)_\infty} (1 - q)^{1-x}, \quad x \in \mathbb{R}\setminus\{0, -1, -2, \ldots\}.
$$

(10)

The Thomae–Jackson q-integral is defined by [16, 11, 28]

$$
\int_a^b f(x) \, dq(x) = (1 - q) \sum_{n=0}^{\infty} [bf(bq^n) - af(aq^n)] q^n.
$$

(11)

The Riemann–Liouville fractional q-integral operator is introduced in [2]

$$
(I^\alpha_q f)(x) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x (qt/x, q)_a^{-\alpha} f(t) \, dt.
$$

(12)

The generalized Riemann–Liouville fractional q-integral operator for $\alpha \in \mathbb{R}^+$ is given by [26]

$$
(I^\alpha_{q,a} f)(x) = \sum_{n=0}^{\infty} \frac{[k]_q! a^{-k}}{k \Gamma_q(\alpha+k+1)} x^{\alpha+k}(a/x, q)_a^{k}.\tag{13}
$$

Proposition 4. For $\alpha \in \mathbb{R}^+$, $0 < a < x < 1$, we have

$$
I^\alpha_{q,a} [x^n] = \sum_{k=0}^{n} \frac{[k]_q! a^{-k}}{k \Gamma_q(\alpha+k+1)} x^{\alpha+k}(a/x, q)_a^{k}.\tag{14}
$$

Theorem 5. For $\alpha \in \mathbb{R}^+$, $0 < c < b < 1$, we have we have

$$
\sum_{n=0}^{\infty} \frac{(-acq^{n+1}; q)_n}{(cq^n; q)_{n+1}} \sum_{k=0}^{\infty} \frac{b^{q+1}(c/b; q)_{n+k}}{c^k(q^n; q)_{n+k}} \frac{\phi_2}{\phi_2} \left[q^{-k}, -acq^{2n+1}, cq^n \right]_n \frac{cq^{2n+1}, -acq^{n+1}}{q}.\tag{15}
$$

Proof of Theorem 5. Multiply $(1 - q)^\alpha$ on both sides of equation (15), the LHS of equation (15) become to

$$
\sum_{n=0}^{\infty} (1 - q)\frac{(-acq^{n+1}; q)_n q^n}{(-acq^{n+1}; q)_{n+1}} \sum_{k=0}^{\infty} \frac{b^{q+1}(c/b; q)_{n+k}}{c^k(q^n; q)_{n+k}} \frac{\phi_2}{\phi_2} \left[q^{-k}, -acq^{2n+1}, cq^n \right]_n \frac{cq^{2n+1}, -acq^{n+1}}{q}.\tag{16}
$$

$$
= \sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_n q^n}{(-abq^{n+1}; q)_{n+1}} \sum_{k=0}^{\infty} \frac{b^{q+1}(c/b; q)_{n+k}}{c^k(q^n; q)_{n+k}} \frac{\phi_2}{\phi_2} \left[q^{-k}, -acq^{2n+1}, cq^n \right]_n \frac{cq^{2n+1}, -acq^{n+1}}{q}.\tag{17}
$$

Similarly, the RHS of equation (15) become to

$$
\sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_n}{(tq^n; q)_{n+1}} (1 - q)^\alpha \sum_{k=0}^{n} \frac{(q^n q)_{n-k}}{(q^n q)_{n-k}} \cdot \frac{b^{q+1}(c/b; q)_{n+k}}{(q^n q)_{n+k}} \tag{18}
$$

$$
= \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_n p^n}{(tq^n; q)_{n+1}} \cdot \frac{[b^n q^n]}{(tq^n; q)_{n+1}} = I^\alpha_{q,a} \left\{ \frac{(-atq^{n+1}; q)_n b^n}{(tq^n; q)_{n+1}} \right\}.\tag{19}
$$

then, we use Proposition 2 can obtain the equation (15). The proof is complete. \(\square \)
3. Moment integrals for a symmetric q-series identity

In this section, we use the moment integrals to deduce a new identity for a symmetric q-series.

Al-Salam and Carlitz [1] defined moments of two discrete distributions $d\alpha^{(a)}(x)$ and $d\beta^{(a)}(x)$ by Rogers-Szego polynomials as follow

$$\int_{-\infty}^{\infty} x^n d\alpha^{(a)}(x) = h_n(a|q) \quad \text{and} \quad \int_{-\infty}^{\infty} x^n d\beta^{(a)}(x) = g_n(a|q),$$

where $\alpha^{(a)}(x)$ is a step function whose jumps occur at the points q^k and aq^k for $k \in \mathbb{N}$, while the jumps of $\beta^{(a)}(x)$ occur at the points q^{-k} for $k \in \mathbb{N}$. These jumps are given by

$$d\alpha^{(a)}(q^k) = \frac{q^k}{(a; q)_n(q, qa; q)_k} \quad \text{and} \quad d\alpha^{(a)}(aq^k) = \frac{q^k}{(1/a; q)_n(q, aq; q)_k}, \quad (19)$$

$$d\beta^{(a)}(q^{-k}) = \frac{a^k q^k (aq^{k+1})_{\infty}}{(q; q)_k}. \quad (20)$$

Liu gained the following expression of bivariate Rogers-Szego polynomials by the technique of partial fraction [18, Eq. (4.20)].

$$h_n(a, b|q) = \frac{\alpha^a}{(b/a; q)_n} \sum_{k=0}^{\infty} \frac{q^{n+k}}{(q, aq/b; q)_k} + \frac{b^n}{(a/b; q)_n} \sum_{k=0}^{\infty} \frac{q^{n+k}}{(q, qb/a; q)_k}. \quad (21)$$

So it’s natural to define the generalized discrete probability measure $\alpha^{(a,b)}$ by

$$\alpha^{(a,b)} = \sum_{k=0}^{\infty} \left[\frac{q^k}{(a/b; q)_n(q, qb/a; q)_k} \epsilon_{bqk} + \frac{q^k}{(b/a; q)_n(q, aq/b; q)_k} \epsilon_{aqk} \right], \quad (22)$$

where the bivariate Rogers–Szegő polynomials expressed by

$$h_n(a, b|q) = \int_{-\infty}^{\infty} x^n d\alpha^{(a,b)}(x), \quad (23)$$

and their generating function are given [18, Eq. (2.3)]

$$\sum_{n=0}^{\infty} h_n(a, b|q) \frac{t^n}{(q; q)_n} = \frac{1}{(at, bt; q)_n} = \int_{-\infty}^{\infty} \frac{1}{(x; q)_n} d\alpha^{(a,b)}(x). \quad (24)$$

Proposition 6 ([5, Eq. (1.11)]). For $x \in \mathbb{N}$ and $d/c = q^{-1}$, if $\max\{|c|, |as|, |at|, |bs|, |bt|\} < 1$, we have

$$\int_{-\infty}^{\infty} \frac{dx}{(ax, bx, cx; q)_n} d\alpha^{(c,x)}(x) = (ds, abst; q)_n \frac{3\phi_2}{(cs, as, at, bs, bt; q)_n} \frac{d/c}{ds, abst : q, ct}. \quad (25)$$

Corollary 7. For $x \in \mathbb{N}$, if $\max\{|as|, |at|, |bs|, |bt|, |abst|\} < 1$, we have

$$\int_{-\infty}^{\infty} \frac{dx}{(ax, bx, q)_n} d\alpha^{(c,x)}(x) = (cs, abst; q)_n \frac{2\phi_2}{(cs, as, abt; q)_n} \frac{as, bs}{cs, abst : q, ct}. \quad (26)$$

Proposition 8 ([7, Eq. (2.10)]). For $n \in \mathbb{N}$, we have

$$\mathbb{E}(\theta_d) [\{at, q\}_n] = \{at, bt, q\}_n, \quad (27)$$

$$\mathbb{E}(\theta_d) [\alpha^n(at, bt, q)_{\infty} \phi_1] \left[q^n, q/(at) ; 0 : q, bt \right]. \quad (28)$$
Proposition 9. For $x \in \mathbb{N}$, if $\max \{ |as|, |at|, |bs|, |bt|, |abst!| \} < 1$, we have
\[
\int_{-\infty}^{\infty} \frac{(cx, dx; q)_\infty}{(ax, bx; q)_\infty} d\alpha^{(x, y)}(x) = \frac{(cs, ds, abst; q)_\infty}{(as, at, bs, bt; q)_\infty} \sum_{j=0}^{\infty} q^{(j)}(-ct)^j(bx, as; q)_j \frac{q^{-j}, 1/(csq^{j-1})}{0} ; q, dsq^j.
\]
(29)

Proof of Proposition 9. By using the equation (26), we have
\[
\mathbb{E}(s; t) \left\{ \int_{-\infty}^{\infty} \frac{(cx, q)_\infty}{(ax, bx; q)_\infty} d\alpha^{(x, y)}(x) \right\} = \frac{(ds, abst; q)_\infty}{(as, at, bs, bt; q)_\infty} \sum_{j=0}^{\infty} q^{(j)}(-1)^j(bx, as; q)_j \frac{q^{(j)}, 1/(csq^{j-1})}{0} ; q, dsq^j.
\]
(30)

Then the LHS of the equation (30) can be written by
\[
\mathbb{E}(s; t) \left\{ \int_{-\infty}^{\infty} \frac{(cx, q)_\infty}{(ax, bx; q)_\infty} d\alpha^{(x, y)}(x) \right\} = \int_{-\infty}^{\infty} \frac{1}{(ax, bx; q)_\infty} \mathbb{E}(s; t) \left\{ (cx, q)_\infty \right\} d\alpha^{(x, y)}(x) = \int_{-\infty}^{\infty} \frac{(cx, dx; q)_\infty}{(ax, bx; q)_\infty} d\alpha^{(x, y)}(x).
\]
(31)

Using the equation (28), the RHS of the equation (30) becomes
\[
\frac{(ds, abst; q)_\infty}{(as, at, bs, bt; q)_\infty} \sum_{j=0}^{\infty} q^{(j)}(-1)^j(bx, as; q)_j \frac{q^{(j)}, 1/(csq^{j-1})}{0} ; q, dsq^j
\]
\[
= \frac{(cs, ds, abst; q)_\infty}{(as, at, bs, bt; q)_\infty} \sum_{j=0}^{\infty} q^{(j)}(-ct)^j(bx, as; q)_j \frac{q^{-j}, 1/(csq^{j-1})}{0} ; q, dsq^j.
\]
The proof is complete.

\[
\Box
\]

Theorem 10. For $x \in \mathbb{N}$, if $\max \{ |-axq^{2n+1}|, |ayq^{2n+1}|, |xq^n|, |yq^n| \} < 1$, we have
\[
\sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_n}{(bq^n; q)_{n+1}} h_n(x, y|q) = \sum_{n=0}^{\infty} \frac{(-axq^{3n+1}; q)_n}{(xq^n; q)_{n+1}} \sum_{j=0}^{\infty} \frac{q^{(j)}(-yq^{2n+1})^j(xq^n, -axq^{2n+1}; q)_j}{(q, -axq^{2n+1}, xq^{2n+1}, -axyq^{3n+1}; q)_j} \times \frac{q^{-j}, 1/(xq^{2n+j})}{0} ; q, -axq^{2n+1+j}.
\]
(32)

Remark 11. Let $y = 0$ in Theorem 10, equation (32) reduces to (7).

Proof of Theorem 10. From a symmetric q-series identity
\[
\sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_n}{(bq^n; q)_{n+1}} t^n = \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_n}{(aq^n; q)_{n+1}} t^n.
\]
(33)

Acting moment integral on both sides of the equation (33), we have
\[
\sum_{n=0}^{\infty} \frac{(-abq^{n+1}; q)_n}{(bq^n; q)_{n+1}} \int_{-\infty}^{\infty} t^n d\alpha^{(x, y)}(t) = \sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_n}{(aq^n; q)_{n+1}} \int_{-\infty}^{\infty} t^n d\alpha^{(x, y)}(t).
\]
(34)

Then use the equation (23) and (29), we obtain equation (32). The proof is complete.
4. Generating functions for a symmetric q-series identity

In this section, motivated by the results of Liu’s [24], we use the generating function for Al-Salam–Carlitz polynomial $\Phi_n^{(a,b)}(x, y|q)$ to generalize symmetric q-series identity.

The homogeneous polynomials $\Phi_n^{(a,b)}(b, c|q)$ is defined by

$$\Phi_n^{(a,b)}(x, y|q) = \sum_{k=0}^{\infty} \binom{n}{k} (\alpha; q)_k (\beta; q)_{n-k} x^k y^{n-k}. \quad (35)$$

Proposition 12 ([24, Proposition 3.2]). If $\max \{|x|, |y|\} < 1$, we have

$$\sum_{n=0}^{\infty} \frac{\Phi_n^{(a,b)}(x, y|q)}{(q^n; q)_n} t^n = \frac{(ax, by; q)_\infty}{(ab, tx, ty; q)_\infty}. \quad (36)$$

Theorem 13. If $\max \{|x|, |y|, |aq2^{n+1}|, |bq^n|, |b|, |t|\} < 1$, we have

$$\sum_{n=0}^{\infty} \frac{(-atq^{n+1}; q)_n(c; q)_k b^n}{(aq^n; q)_{n+1}(q; q)_k} = \sum_{n=0}^{\infty} \frac{(c, -aq^{n+1}, bq^{2n+1}; q)_{n+1} t^n}{(q; -aq^{2n+1}, bq^n; q)_{n+1}} \emptyset(\frac{q/c, -aq^{2n+1}, bq^n}{-abq^{n+1}, bq^{2n+1}; q}) \emptyset(\frac{x}{t}). \quad (37)$$

Remark 14. Let $c = 0$ in Theorem 13, equation (37) reduces to (7).

Proof of Theorem 13. By Using equation (36), let $a = q^{-n}, b = q^{n+1}, x = -aq^{2n+1}, y = q^n, t = b$ and $\max \{|-aq^{2n+1}|, |bq^n|\} < 1$, then we have

$$\sum_{n=0}^{\infty} t^n \sum_{k=0}^{\infty} \frac{\Phi_k^{(q^{-n}q^{n+1})}(-aq^{2n+1}, q^n|q)}{(q; q)_k} \frac{b^k}{(q; q)_k} = \sum_{n=0}^{\infty} \frac{(-aq^{n+1}, bq^{2n+1}; q)_{n+1}}{(-aq^{2n+1}, bq^n; q)_{n+1}} \emptyset\sum_{k=0}^{\infty} \frac{(-abq^{n+1}; q)_k t^n}{(bq^n; q)_{n+1}}. \quad (38)$$

Then, the LHS of equation (37) can be written by

$$\sum_{n=0}^{\infty} \frac{(c, -aq^{n+1}, bq^{2n+1}; q)_{n+1} t^n}{(aq^n; q)_{n+1}} \emptyset(\frac{q/c, -aq^{2n+1}, bq^n}{-abq^{n+1}, bq^{2n+1}; q}) \emptyset(\frac{x}{t}).$$

Then, the proof is complete. \qed

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11501155).
References

DEPARTMENT OF MATHEMATICS, HANGZHOU NORMAL UNIVERSITY, HANGZHOU CITY, ZHEJIANG PROVINCE, 311121, PR CHINA.

E-mail address: 21caojian@gmail.com; 21caojian@163.com; 1883579225420163.com.