INCLUSION PROPERTIES FOR CERTAIN k–UNIFORMLY SUBCLASSES OF p–VALENT FUNCTIONS DEFINED BY CERTAIN INTEGRAL OPERATOR

T. M. SEOUDY

Abstract. We introduce several k–uniformly subclasses of p–valent functions defined by certain integral operator and investigate various inclusion relationships for these subclasses. Some interesting applications involving certain classes of integral operators are also considered.

1. Introduction

Let \mathcal{A}_p denote the class of functions of the form:

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \ (p \in \mathbb{N} = \{1, 2, 3, \ldots\})$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. If f and g are analytic in U, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function ω, analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1 \ (z \in U)$, such that $f(z) = g(\omega(z)) \ (z \in U)$. In particular, if the function g is univalent in U the above subordination is equivalent to $f(0) = g(0)$ and $f(U) \subset g(U)$ (see [9] and [10]).

For $0 \leq \gamma, \eta < p$, $k \geq 0$ and $z \in U$, we define $US_p^*(k; \gamma)$, $UC_p(k; \gamma)$, $UK_p(k; \gamma, \eta)$ and $UK^*_p(k; \gamma, \eta)$ the k–uniformly subclasses of \mathcal{A}_p consisting of all analytic functions which are, respectively, p–valent starlike of order γ, p–valent convex of order γ, p–valent close-to-convex of order γ, and type η and p–valent quasi-convex of order γ, and type η as follows:

$$US_p^*(k; \gamma) = \left\{ f \in \mathcal{A}_p : \Re \left(\frac{zf'(z)}{f(z)} - \gamma \right) > k \left| \frac{zf'(z)}{f(z)} - p \right| \right\},$$

$$UC_p(k; \gamma) = \left\{ f \in \mathcal{A}_p : \Re \left(1 + \frac{zf''(z)}{f'(z)} - \gamma \right) > k \left| 1 + \frac{zf''(z)}{f'(z)} - p \right| \right\}.$$
where we define the function $q_{p;k;\cdot}$ as the following:

\[q_{p;k;\cdot}(z) = \begin{cases}
\frac{p + (p - 2\gamma)z}{1 - z} & (k = 0), \\
\frac{p - \gamma}{1 - k^2} \cos \left\{ \frac{\pi}{2} \left(\cos^{-1} k \right) i \log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right\} - \frac{k^2 p - \gamma}{1 - k^2} & (0 < k < 1), \\
p + \frac{2(p - \gamma)}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2 & (k = 1), \\
p - \gamma \sin \left\{ \frac{\pi}{2} \zeta(k) \right\} \int_0^{\frac{u(z)}{\sqrt{1 - x^2} \sqrt{1 - k^2}}} \frac{dt}{\sqrt{1 - t^2}} + \frac{k^2 p - \gamma}{k^2 - 1} & (k > 1),
\end{cases} \]

where $u(z) = \frac{\sqrt{1 - z^2}}{1 - \sqrt{1 - z^2}}$, $x \in (0, 1)$ and $\zeta(k)$ is such that $k = \cosh \frac{\pi \zeta'(z)}{\pi \zeta(z)}$. By virtue of the properties of the conic domain $\Omega_{p,k,\gamma}$, we have

\[\Re \{q_{p,k,\gamma}(z)\} > \frac{kp + \gamma}{k + 1}. \]

Making use of the principal of subordination between analytic functions and the definition of $q_{p,k,\gamma}(z)$, we may rewrite the subclasses $US_{p}^*(k;\cdot)$, $UC_{p}(k;\cdot)$, $UK_{p}(k;\cdot,\gamma)$ and $UK_{p}^*(k;\cdot,\beta)$ as the following:

\[US_{p}^*(k;\gamma) = \left\{ f \in A_p : \frac{zf'(z)}{f(z)} < q_{p,k,\gamma}(z) \right\}, \]

\[UC_{p}(k;\cdot) = \left\{ f \in A_p : 1 + \frac{zf''(z)}{f'(z)} < q_{p,k,\gamma}(z) \right\}, \]

\[UK_{p}(k;\cdot,\gamma) = \left\{ f \in A_p : \frac{zf'(z)}{g(z)} > k \left| \frac{zf'(z)}{g(z)} - p \right| \right\}, \]

\[UK_{p}^*(k;\cdot,\beta) = \left\{ f \in A_p : \frac{zf'(z)}{g'(z)} > k \left| \frac{zf'(z)}{g'(z)} - p \right| \right\}. \]
We note that the one-parameter family of integral operator

\[UK_p (k; \gamma, \eta) = \left\{ f \in A_p : \exists g \in US_p^* (k; \gamma), \frac{zf'(z)}{g(z)} \prec q_{p,k,\gamma} (z) \right\}, \]

(11)

\[UK^*_p (k; \gamma, \eta) = \left\{ f \in A_p : \exists g \in UC_p (k; \eta), \frac{zf'(z)}{g(z)} \prec q_{p,k,\gamma} (z) \right\}. \]

(12)

Motivated essentially by Jung et al. [8], Shams et al. [15] introduced the integral operator \(I^\alpha_p : A_p \to A_p \) as follows (see also Aouf et al. [3]):

\[
I^\alpha_p f (z) = \begin{cases}
\frac{(p + 1)^\alpha}{z \Gamma (\alpha)} \int_0^z \left(\log \frac{t}{z} \right)^{\alpha - 1} f (t) \, dt & (\alpha > 0; p \in \mathbb{N}), \\
0 & (\alpha = 0; p \in \mathbb{N}).
\end{cases}
\]

(13)

For \(f \in A_p \) given by (1), then from (13), we deduce that

\[I^\alpha_p f (z) = z^p + \sum_{n=p+1}^{\infty} \left(\frac{p + 1}{n + 1} \right)^\alpha a_n z^n, \quad (\alpha \geq 0; p \in \mathbb{N}). \]

(14)

Using the above relation, it is easy to verify the identity:

\[z (I^{\alpha+1}_p f (z))' = (p + 1) I^\alpha_p f (z) - I^{\alpha+1}_p f (z). \]

(15)

We note that the one-parameter family of integral operator \(I^\alpha_1 = I^\alpha \) was defined by Jung et al. [8].

Next, using the operator \(I^\alpha_p \), we introduce the following \(k \)--uniformly subclasses of \(p \)--valent functions for \(\alpha \geq 0, p \in \mathbb{N}, k \geq 0 \) and \(0 \leq \gamma, \eta < p \):

\[US_p^* (\alpha; k; \gamma) = \left\{ f \in A_p : I^\alpha_p f (z) \in US_p^* (k; \gamma) (z \in \mathbb{U}) \right\}, \]

(16)

\[UC_p (\alpha; k; \gamma) = \left\{ f \in A_p : I^\alpha_p f (z) \in UC_p (k; \gamma) (z \in \mathbb{U}) \right\}, \]

(17)

\[UK_p (\alpha; k; \gamma, \eta) = \left\{ f \in A_p : I^\alpha_p f (z) \in UK_p (k; \gamma, \eta) (z \in \mathbb{U}) \right\}, \]

(18)

\[UK^*_p (\alpha; k; \gamma, \eta) = \left\{ f \in A_p : I^\alpha_p f (z) \in UK^*_p (k; \gamma, \eta) (z \in \mathbb{U}) \right\}. \]

(19)

We also note that

\[f \in US_p^* (\alpha; k; \gamma) \Leftrightarrow \frac{zf'(z)}{p} \in UC_p (\alpha; k; \gamma), \]

(20)

and

\[f \in UK_p (\alpha; k; \gamma, \eta) \Leftrightarrow \frac{zf'(z)}{p} \in UK^*_p (\alpha; k; \gamma, \eta). \]

(21)

In this paper, we investigate several inclusion properties of the classes \(US_p^* (\alpha; k; \gamma), \)

\(UC_p (\alpha; k; \gamma), \)

\(UK_p (\alpha; k; \gamma, \eta), \) and \(UK^*_p (\alpha; k; \gamma, \eta) \) associated with the operator \(I^\alpha_p \).

Some applications involving integral operators are also considered.
2. Inclusion properties involving the operator I_p^α

In order to prove the main results, we shall need the following lemmas.

Lemma 1 [6] Let $h(z)$ be convex univalent in \mathbb{U} with $\Re\{\eta h(z) + \gamma\} > 0 (\eta, \gamma \in \mathbb{C})$.
If $p(z)$ is analytic in \mathbb{U} with $p(0) = h(0)$, then

$$p(z) + \frac{zp'(z)}{\eta p(z) + \gamma} \prec h(z)$$

implies

$$p(z) \prec h(z).$$

Lemma 2 [9] Let $h(z)$ be convex univalent in \mathbb{U} and let w be analytic in \mathbb{U} with $\Re\{w(z)\} \geq 0$. If $p(z)$ is analytic in \mathbb{U} and $p(0) = h(0)$, then

$$p(z) + w(z)zp'(z) \prec h(z)$$

implies

$$p(z) \prec h(z).$$

Theorem 1 Let $k \geq 0$ and $0 \leq \gamma < p$. Then,

$$\text{US}^*_{p}(\alpha; k; \gamma) \subset \text{US}^*_{p}(\alpha + 1; k; \gamma).$$

Proof. Let $f \in \text{US}^*_{p}(\alpha; k; \gamma)$ and set

$$p(z) = \frac{z(I_p^\alpha f(z))'}{I_p^\alpha f(z)} \quad (z \in \mathbb{U}),$$

where the function $p(z)$ is analytic in \mathbb{U} with $p(0) = p$. Using (15), (26) and (27), we have

$$\frac{z(I_p^\alpha f(z))'}{I_p^\alpha f(z)} = p(z) + \frac{zp'(z)}{p(z) + 1} \prec q_{p,k,\gamma}(z).$$

Since $k \geq 0$ and $0 \leq \gamma < p$, we see that

$$\Re\{q_{p,k,\gamma}(z) + 1\} > 0 \quad (z \in \mathbb{U}).$$

Applying Lemma 1 to (28), it follows that $p(z) \prec q_{p,k,\gamma}(z)$, that is, $f \in \text{US}^*_{p}(\alpha + 1; k; \gamma)$. Therefore, we complete the proof of Theorem 1. □

Theorem 2 Let $k \geq 0$ and $0 \leq \gamma < p$. Then,

$$\text{UC}_{p}(\alpha; k; \gamma) \subset \text{UC}_{p}(\alpha + 1; k; \gamma).$$

Proof. Applying (21) and Theorem 1, we observe that

$$f \in \text{UC}_{p}(\alpha; k; \gamma) \iff \frac{zf'}{p} \in \text{US}^*_{p}(\alpha; k; \gamma)$$

$$\iff \frac{zf'}{p} \in \text{US}^*_{p}(\alpha + 1; k; \gamma) \quad \text{(by Theorem 1)},$$

which evidently proves Theorem 2. □

Next, by using Lemma 2, we obtain the following inclusion relation for the class $\text{UK}_{p}(\alpha; k; \gamma, \eta)$.

Theorem 3 Let $k \geq 0$ and $0 \leq \gamma, \eta < p$. Then,

$$\text{UK}_{p}(\alpha; k; \gamma, \eta) \subset \text{UK}_{p}(\alpha + 1; k; \gamma, \eta).$$
Proof. Let \(f \in UK_p (\alpha; k; \gamma, \eta) \). Then, from the definition of \(UK_p (\alpha; k; \gamma, \eta) \), there exists a function \(r(z) \in US_p^* (k; \eta) \) such that
\[
\frac{z (I_p^{\alpha} f (z))'}{r (z)} < q_{p,k,\gamma} (z).
\] (32)

Choose the function \(g \) such that \(I_p^{\alpha} g (z) = r (z) \). Then, \(g \in US_p^* (\alpha; k; \eta) \) and
\[
\frac{z (I_p^{\alpha} f (z))'}{I_p^{\alpha} g (z)} < q_{p,k,\gamma} (z).
\] (33)

Now let
\[
p(z) = \frac{z (I_p^{\alpha+1} f(z))'}{I_p^{\alpha+1} g(z)} \quad (z \in U),
\] (34)
where \(p(z) \) is analytic in \(U \) with \(p(0) = p \). Since \(g \in US_p^* (\alpha; k; \eta) \), by Theorem 1, we know that \(g \in US_p^* (\alpha + 1; k; \eta) \). Let
\[
t(z) = \frac{z (I_p^{\alpha+1} g(z))'}{I_p^{\alpha+1} g(z)} \quad (z \in U),
\] (35)
where \(t(z) \) is analytic in \(U \) with \(\Re \{ t(z) \} > \frac{k p + \eta}{k + 1} \). Also, from (34), we note that
\[
I_p^{\alpha+1} z f' (z) = I_p^{\alpha+1} g (z) \ p(z).
\] (36)
Differentiating both sides of (36) with respect to \(z \), we obtain
\[
\frac{z (I_p^{\alpha+1} z f' (z))'}{I_p^{\alpha+1} g(z)} = \frac{z (I_p^{\alpha+1} g(z))'}{I_p^{\alpha+1} g(z)} p(z) + z p' (z)
\] \[= t(z) p(z) + z p' (z).
\] (37)

Now using the identity (15) and (35), we obtain
\[
\frac{z (I_p^{\alpha} f (z))'}{I_p^{\alpha} g (z)} = \frac{I_p^{\alpha} z f' (z)}{I_p^{\alpha} g (z)} = \frac{z (I_p^{\alpha+1} z f' (z))'}{z (I_p^{\alpha+1} g (z))'} + \frac{I_p^{\alpha+1} z f' (z)}{I_p^{\alpha+1} g (z)}
\] \[= \frac{z (I_p^{\alpha+1} g(z))'}{I_p^{\alpha+1} g(z)} + 1
\] \[= \frac{t(z) p(z) + z p' (z) + p(z)}{t(z) + 1}
\] \[= p(z) + \frac{z p' (z)}{t(z) + 1}.
\] (38)

Since \(k \geq 0, 0 \leq \eta < p \) and \(\Re \{ t(z) \} > \frac{k p + \eta}{k + 1} \), we see that
\[\Re \{ t(z) + 1 \} > 0 \quad (z \in U).\]
Hence, applying Lemma 2, we can show that \(p(z) \prec q_{p,k,\gamma}(z) \) so that \(f \in UK_p(\alpha; k; \gamma, \eta) \). Therefore, we complete the proof of Theorem 3. \(\square \)

Theorem 4 Let \(k \geq 0 \) and \(0 \leq \gamma, \eta < p \). Then,

\[
UK^*_p(\alpha; k; \gamma, \eta) \subset UK^*_p(\alpha + 1; k; \gamma, \eta).
\] (2.18)

Proof. Just as we derived Theorem 2 as consequence of Theorem 1 by using the equivalence (21), we can also prove Theorem 4 by using Theorem 3 and the equivalence (??). \(\square \)

3. Inclusion Properties Involving the Integral Operator \(F_{c,p} \)

In this section, we present several integral-preserving properties of the \(p \)-valent function classes introduced here. We consider the generalized Libera integral operator \(F_{c,p}(f) \) (see [5] and [4]) defined by

\[
F_{c,p}(f)(z) = \frac{c + p}{z^c} \int_{c}^{t} f(z) \, dt \quad (c > -p).
\] (39)

Theorem 5 Let \(kp + \gamma + c(k + 1) \geq 0 \). If \(f \in US^*_p(\alpha; k; \gamma) \), then \(F_{c,p}(f) \in US^*_p(\alpha; k; \gamma) \).

Proof. Let \(f \in US^*_p(\alpha; k; \gamma) \) and set

\[
p(z) = \frac{z \left(I^\alpha_{p} F_{c,p}(f)(z)\right)'}{I^\alpha_{p} F_{c,p}(f)(z)} \quad (z \in \mathbb{U}),
\] (40)

where \(p(z) \) is analytic in \(\mathbb{U} \) with \(p(0) = p \). From (39), we have

\[
z \left(I^\alpha_{p} F_{c,p}(f)(z)\right)' = (c + p) I^\alpha_{p} f(z) - cI^\alpha_{p} F_{c,p}(f)(z).
\] (41)

Then, by using (40) and (41), we obtain

\[
(c + p) \frac{I^\alpha_{p} f(z)}{I^\alpha_{p} F_{c,p}(f)(z)} = p(z) + c.
\] (42)

Taking the logarithmic differentiation on both sides of (42) and multiplying by \(z \), we have

\[
z \left(I^\alpha_{p} f(z)\right)' = p(z) + \frac{zp'(z)}{p(z) + c} < q_{k,\gamma}(z).
\] (43)

Hence, by virtue of Lemma 1, we conclude that \(p(z) \prec q_{k,\gamma}(z) \) in \(\mathbb{U} \), which implies that \(F_{c,p}(f) \in US^*_p(\alpha; k; \gamma) \). \(\square \)

Next, we derive an inclusion property involving \(F_{c,p}(f) \), which is given by the following.

Theorem 6 Let \(kp + \gamma + c(k + 1) \geq 0 \). If \(f \in UC_p(\alpha; k; \gamma) \), then \(F_{c,p}(f) \in UC_p(\alpha; k; \gamma) \).
Proof. By applying Theorem 5, it follows that

\[f \in UC_p (\alpha; k; \gamma) \iff \frac{zf'}{p} \in US_p^* (\alpha; k; \gamma) \]

\[\Rightarrow F_{c,p} \left(\frac{zf'}{p} \right) \in US_p^* (\alpha; k; \gamma) \]

\[\iff \frac{z(F_{c,p}(f))}{p} \in US_p^* (\alpha; k; \gamma) \]

\[\iff F_{c,p}(f) \in UC_p (\alpha; k; \gamma), \]

which proves Theorem 6. \qed

Theorem 7 Let \(kp + \eta + c(k + 1) \geq 0 \). If \(f \in UK_p (\alpha; k; \gamma, \eta) \), then \(F_{c,p}(f) \in UK_p (\alpha; k; \gamma, \eta) \).

Proof. Let \(f \in UK_p (\alpha; k; \gamma, \eta) \). Then, in view of the definition of the class \(UK_p (\alpha; k; \gamma, \eta) \), there exists a function \(g \in US_p^* (\alpha; k; \gamma) \) such that

\[z (I_p f (z))' \frac{1}{I_p g (z)} < q_{k,\gamma} (z). \tag{44} \]

Thus, we set

\[p (z) = \frac{z (I_p F_{c,p} (f) (z))'}{I_p F_{c,p} (g) (z)} (z \in U), \tag{45} \]

where \(p (z) \) is analytic in \(U \) with \(p(0) = p \). Since \(g \in US_p^* (\alpha; k; \gamma) \), we see from Theorem 5 that \(F_{c,p}(f) \in US_p^* (\alpha; k; \gamma) \). Let

\[t (z) = \frac{z (I_p F_{c,p} (g) (z))'}{I_p F_{c,p} (g) (z)} (z \in U), \tag{46} \]

where \(t (z) \) is analytic in \(U \) with \(\Re \{ t (z) \} > \frac{k p + \eta}{k + 1} \). Also, from (45), we note that

\[I_p^\alpha z F_{c,p}' (f) (z) = I_p^\alpha F_{c,p} (g) (z) \cdot p (z). \tag{47} \]

Differentiating both sides of (47) with respect to \(z \), we obtain

\[\frac{z (I_p^\alpha z F_{c,p}' (f) (z))}{I_p^\alpha F_{c,p} (g) (z)} = \frac{z (I_p^\alpha F_{c,p} (g) (z))'}{I_p^\alpha F_{c,p} (g) (z)} p (z) + z p' (z) \]

\[= t (z) p (z) + z p' (z). \tag{48} \]
Now using the identity (41) and (48), we obtain
\[
\frac{z \left(I_p^a f(z) \right)'}{I_p^a g(z)} = \frac{z \left(I_p^a z F_{c,p}'(f)(z) \right)'}{z \left(I_p^a F_{c,p}(g)(z) \right)} + c \frac{z \left(I_p^a F_{c,p}(f)(z) \right)'}{z \left(I_p^a F_{c,p}(g)(z) \right)} + c
\]
\[
= \frac{z \left(I_p^a z F_{c,p}'(g)(z) \right)'}{z \left(I_p^a F_{c,p}(g)(z) \right)} + c
\]
\[
= \frac{t(z) p(z) + z p'(z) + cp(z)}{t(z) + c}
\]
\[
= p(z) + \frac{z p'(z)}{t(z) + c}.
\]
Since \(k p + \eta + c (k + 1) \geq 0 \) and \(\Re \{ t(z) \} > \frac{k p + \eta}{k + 1} \), we see that
\[
\Re \{ t(z) + c \} > 0 \quad (z \in \mathbb{U}).
\]
Hence, applying Lemma 2 to (49), we can show that \(p(z) \prec q_{p,k,\gamma}(z) \) so that \(f \in UK_p(\alpha; k; \gamma, \eta) \).

Theorem 8 Let \(k p + \eta + c (k + 1) \geq 0 \). If \(f \in UK_p^*(\alpha; k; \gamma, \eta) \), then \(F_{c,p}(f) \in UK_p^*(\alpha; k; \gamma, \eta) \).

Proof. Just as we derived Theorem 6 as consequence of Theorem 5, we easily deduce the integral-preserving property asserted by Theorem 8 by using Theorem 7.

Acknowledgement. I would like to express my deepest gratitude and thankfulness to Professor Dr. M. K. Aouf for his valuable guidance, his generous encouragement, deep interest and kind cooperation to me.

References

T. M. Seoudy, Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

E-mail address: tms00@fayoum.edu.eg