GLOBAL NONEXISTENCE OF SOLUTION OF A SYSTEM WAVE EQUATIONS WITH NONLINEAR DAMPING AND SOURCE TERMS

ABDELAZIZ RAHMOUNE, DJAMEL OUCHENANE

Abstract. In this work, we consider the following system of nonlinear wave equations with nonlinear damping and source terms acting in both equations:

\[u_{tt} - \Delta u_t - \text{div} \left(|\nabla u|^{\alpha-2} \nabla u \right) - \text{div} \left(|\nabla u|^{\beta_1-2} \nabla u_t \right) + a_1 |u_t|^{m-2} u_t = f_1(u, v), \]

\[v_{tt} - \Delta v_t - \text{div} \left(|\nabla v|^{\alpha-2} \nabla v \right) - \text{div} \left(|\nabla v_t|^{\beta_2-2} \nabla v_t \right) + a_2 |v_t|^{r-2} v_t = f_2(u, v). \]

Under an appropriate assumptions on the initial data and under some restrictions on the parameter \(\alpha, \beta_1, \beta_2, m, r \) and on the nonlinear functions \(f_1 \) and \(f_2 \), we prove a global nonexistence result. Our method relies on the paper [20] where a different system of wave equations has been discussed.

1. Introduction

The study of the interaction between the source term and the damping term in the wave equation

\[u_{tt} - \Delta u + a |u_t|^{m-2} u_t = b |u|^{p-2} u, \quad \text{in } \Omega \times (0, T), \]

where \(\Omega \) is a bounded domain of \(\mathbb{R}^N \), \(N \geq 1 \) with a smooth boundary \(\partial \Omega \), has an exciting history.

It has been shown that the existence and the asymptotic behavior of solutions depend on a crucial way on the parameters \(m, p \) and on the nature of the initial data. More precisely, it is well known that in the absence of the source term \(|u|^{p-2} u \) then a uniform estimate of the form

\[\|u_t(t)\|_2 + \|u(t)\|_2 \leq C, \]

holds for any initial data \((u_0, u_1) = (u(0), u_t(0)) \) in the energy space \(H_0^1(\Omega) \times L^2(\Omega) \), where \(C \) is a positive constant independent of \(t \). The estimate (2) shows that any local solution \(u \) of problem (1) can be continued in time as long as (2) is verified. This result has been proved by several authors. See for example [5, 8].
the other hand in the absence of the damping term $|u_t|^{m-2}u_t$, the solution of (1) ceases to exist and there exists a finite value T^* such that
\[
\lim_{t \to T^*} \|u(t)\|_p = +\infty,
\]

When both terms are present in equation (1), the situation is more delicate. This case has been considered by Levine in [11, 12], where he investigated problem (1) in the linear damping case ($m = 2$) and showed that any local solution u of (1) cannot be continued in $(0, \infty) \times \Omega$ whenever the initial data are large enough (negative initial energy). The main tool used in [11] and [12] is the "concavity method". This method has been a widely applicable tool to prove the blow up of solutions in finite time of some evolution equations. The basic idea of this method is to construct a positive functional $\theta(t)$ depending on certain norms of the solution and show that for some $\gamma > 0$, the function $\theta^{-\gamma}(t)$ is a positive concave function of t. Thus there exists T^* such that $\lim_{t \to T^*} \theta^{-\gamma}(t) = 0$. Since then, the concavity method became a powerful and simple tool to prove blow up in finite time for other related problems. Unfortunately, this method is limited to the case of a linear damping. Georgiev and Todorova [4] extended Levine’s result to the nonlinear damping case ($m > 2$). In their work, the authors considered the problem (1) and introduced a method different from the one known as the concavity method. They showed that solutions with negative energy continue to exist globally 'in time' if the damping term dominates the source term (i.e $m \geq p$) and blow up in finite time in the other case (i.e $p > m$) if the initial energy is sufficiently negative. Their method is based on the construction of an auxiliary function L which is a perturbation of the total energy of the system and satisfies the differential inequality
\[
\frac{dL(t)}{dt} \geq \xi L^{1+\nu}(t)
\]
In $(0, \infty)$, where $\nu > 0$. Inequality (4) leads to a blow up of the solutions in finite time $t \geq L(0)^{-\nu} \xi^{-1}\nu^{-1}$, provided that $L(0) > 0$. However the blow up result in [4] was not optimal in terms of the initial data causing the finite time blow up of solutions. Thus several improvement have been made to the result in [4] (see for example [9, 10, 15, 22]. In particular, Vitillaro in [22] combined the arguments in [4] and [10] to extend the result in [4] to situations where the damping is nonlinear and the solution has positive initial energy.

In [23], Young, studied the problem
\[
u_{tt} - \Delta u_t - \text{div} \left(|\nabla u|^{m-2} \nabla u \right) - \text{div} \left(|\nabla u_t|^{\beta-2} \nabla u_t \right) + a |u_t|^{m-2} u_t = b |u|^{p-2} u,
\]
in $(0, T) \times \Omega$ with initial conditions and boundary condition of Dirichlet type. He showed that solutions blow up in finite time T^* under the condition $p > \max \{\alpha, m\}$, $\alpha > \beta$, and the initial energy is sufficiently negative (see condition (ii) in [23][Theorem 2.1]). In fact this condition made it clear that there exists a certain relation between the blow-up time and $|\Omega|$. Messaoudi and Said-Houari [13] improved the result in [23] and showed that the blow up of solutions of problem (5) takes place for negative initial data only regardless of the size of Ω.
To the best of our knowledge, the system of wave equations is not well studied, and only few results are available in literature. Let us mention some of them. Milla Miranda and Medeiros [16] considered the following system

\[
\begin{aligned}
&u_{tt} - \Delta u + u - |v|^{\rho+2} |u|^\rho u = f_1(x), \\
v_{tt} - \Delta v + v - |u|^{\rho+2} |v|^\rho v = f_2(x),
\end{aligned}
\]

in \(\Omega \times (0, T) \). By using the method of potential well, the authors determined the existence of weak solutions of system (6). Some special cases of system (6) arise in quantum field theory which describe the motion of charged mesons in an electromagnetic field. See [21] and [6]. Agre and Rammaha [1] studied the system

\[
\begin{aligned}
&u_{tt} - \Delta u + |u_t|^{m-1} u_t = f_1(u, v), \\
v_{tt} - \Delta v + |v_t|^{r-1} v_t = f_2(u, v),
\end{aligned}
\]

in \(\Omega \times (0, T) \) with initial and boundary conditions of Dirichlet type and the nonlinear functions \(f_1(u, v) \) and \(f_2(u, v) \) satisfying

\[
\begin{aligned}
f_1(u, v) &= b_1 |u + v|^{2(\rho+1)} (u + v) + b_2 |u|^{\rho} |v|^{\rho+2}, \\
f_2(u, v) &= b_1 |u + v|^{2(\rho+1)} (u + v) + b_2 |u|^{\rho+2} |v|^{\rho} v,
\end{aligned}
\]

They proved, under some appropriate conditions on \(f_1(u, v) \), \(f_1(u, v) \) and the initial data, several results on local and global existence, but no rate of decay has been discussed. They also showed that any weak solution with negative initial energy blows up in finite time, using the same techniques as in [4]. Recently, the blow up result in [1] has been improved by Said-Houari [20] by considering certain class of initial data with positive initial energy. Subsequently, the paper [20] has been followed by [19], where the author proved that if the initial data are small enough, then the solution of (7) is global and decays with an exponential rate if \(m = r = 1 \) and with a polynomial rate like \(t^{-2/(\max(m, r) - 1)} \) if \(\max(m, r) > 1 \). Several authors and many results appeared in the literature see for example \([3, 18, 17]\).

In this paper, we consider the following system of wave equations

\[
\begin{aligned}
&u_{tt} - \Delta u_t - div \left(|\nabla u|^{2\alpha - 2} \nabla u \right) - div \left(|\nabla u_t|^{2\beta_1 - 2} \nabla u_t \right) + a_1 |u_t|^{m-2} u_t = f_1(u, v), \\
v_{tt} - \Delta v_t - div \left(|\nabla v|^{2\alpha - 2} \nabla v \right) - div \left(|\nabla v_t|^{2\beta_2 - 2} \nabla v_t \right) + a_2 |v_t|^{r-2} v_t = f_2(u, v),
\end{aligned}
\]

where the functions \(f_1(u, v) \) and \(f_2(u, v) \) satisfying (8). In (9), \(u = u(t, x), v = v(t, x), x \in \Omega, \) a bounded domain of \(\mathbb{R}^N \) \((N \geq 1)\) with a smooth boundary \(\partial \Omega, \)
\(t > 0 \) and \(a_1, a_2, b_1, b_2 > 0 \) and \(\beta_1, \beta_2, m, r \geq 2, \alpha > 2. \) System (9) is supplemented by the following initial and boundary conditions

\[
\begin{aligned}
&(u(0), v(0)) = (u_0, v_0), (u_t(0), v_t(0)) = (u_1, v_1), x \in \Omega \\
&u(x) = v(x) = 0, x \in \partial \Omega,
\end{aligned}
\]

Our main interest in this work is to prove a global nonexistence result of solutions of system (9) - (10) for large initial data. We use the method in [20] with the necessary modification imposed by the nature of our problem. The core of this method relies on the use of an auxiliary function \(L \) in order to obtain a differential inequality of the form (4) which leads to the desired result.
The plan of the paper is as follows. In section 2, we present some material that we need in the proof of our result. While in section 3, we state and prove our main result.

2. Preliminaries

In this section, we introduce some notations and some technical lemmas to be used throughout this paper. By $\| \cdot \|_q$, we denote the usual $L^q(\Omega)$-norm. The constants C, c, c_1, c_2, \ldots, used throughout this paper are positive generic constants, which may be different in various occurrences. We define

$$F(u, v) = \frac{1}{2(\rho + 2)} \left[b_1 |u + v|^{2(\rho + 2)} + 2b_2 |uv|^{\rho + 2} \right].$$

Then, it is clear that, from (8), we have

$$u f_1 (u, v) + v f_2 (u, v) = 2(\rho + 2) F(u, v). \quad (11)$$

The following lemma was introduced and proved in [14]

Lemma 1 There exist two positive constants c_0 and c_1 such that

$$\frac{c_0}{2(\rho + 2)} \left(|u|^{2(\rho + 2)} + |v|^{2(\rho + 2)} \right) \leq F(u, v) \leq \frac{c_1}{2(\rho + 2)} \left(|u|^{2(\rho + 2)} + |v|^{2(\rho + 2)} \right). \quad (12)$$

And the energy functional

$$E(t) = \frac{1}{2} \left(\|u_t\|_2^2 + \|v_t\|_2^2 \right) + \frac{1}{\alpha} \left(\|\nabla u\|_\alpha + \|\nabla v\|_\alpha \right) - \int_\Omega F(u, v) \, dx. \quad (13)$$

Let us know define a constant r_α as follows:

$$r_\alpha = \frac{N\alpha}{N - \alpha}, \quad \text{if } N > \alpha, \quad r_\alpha > \alpha \text{ if } N = \alpha, \text{ and } r_\alpha = \infty \text{ if } N < \alpha. \quad (14)$$

The inequality below is a key element in proving the global existence of solution. A similar version of this lemma was first introduced in [20]

Lemma 2 Suppose that $\alpha > 2$, and $2 < 2(\rho + 2) < r_\alpha$. Then there exists $\eta > 0$ such that the inequality

$$\|u + v\|_{2(\rho + 2)}^{2(\rho + 2)} < 2\|uv\|_{\rho + 2}^2 + \eta \left(\|\nabla u\|_\alpha + \|\nabla v\|_\alpha \right) \leq \eta \left(\|\nabla u\|_\alpha + \|\nabla v\|_\alpha \right)^{2(\rho + 2)} \quad (15)$$

holds.

Proof. It is clear that by using the Minkowski inequality, we get

$$\|u + v\|^2_{2(\rho + 2)} \leq 2\|u\|^2_{2(\rho + 2)} + \|v\|^2_{2(\rho + 2)},$$

the embedding $W^{1,\alpha}_0 \hookrightarrow L^{2(\rho + 2)}(\Omega)$, gives

$$\|u\|^2_{2(\rho + 2)} \leq C\|\nabla u\|^2_{\alpha} \leq C(\|\nabla u\|_\alpha + \|\nabla v\|_\alpha)^{\frac{\rho + 2}{2}},$$

and similary, we have

$$\|v\|^2_{2(\rho + 2)} \leq C\|\nabla v\|^2_{\alpha} + \|\nabla v\|_\alpha^{\frac{\rho + 2}{2}}.$$

Thus, we deduce from the above estimates that

$$\|u + v\|_{2(\rho + 2)} \leq C(\|\nabla u\|_\alpha + \|\nabla v\|_\alpha)^{\frac{\rho + 2}{2}} \quad (16)$$
also, Hölder’s and Young’s inequalities give us
\[
\|uv\|_{(2\rho+2)} \leq \|u\|_{2(\rho+2)} \|v\|_{2(\rho+2)} \leq C(\|\nabla u\|_{2(\rho+2)}^2 + \|\nabla v\|_{2(\rho+2)}^2) \leq C(\|\nabla u\|_{\infty}^2 + \|\nabla v\|_{\infty}^2)^{\frac{2}{\alpha}}.
\] (17)
Collecting the estimates (16) and (17), then (15) holds. This completes the proof of lemma (2)

lemma 3 Let \((u, v)\) be the solution of system (9) - (10) then the energy functional is a non-increasing function, that is for all \(t \geq 0\)
\[
\frac{dE(t)}{dt} = -\|\nabla u_t\|^2 - \|\nabla v_t\|^2 - \|\nabla u_t\|_{\beta_1} - \|\nabla v_t\|_{\beta_2} - a_1 \|u_t\|_m - a_2 \|v_t\|_r
\] (18)

Proof. We multiply the first equation in (9) by \(u_t\) and second equation by \(v_t\) and integrate over \(\Omega\), using integration by parts, we obtain (18)

3. Global nonexistence result

In this section, we prove that, under some restrictions on the initial data and under some restrictions on the parameter \(\alpha, \beta_1, \beta_2, m, r\), then the lifespan of solution of problem (9)- (10) is finite

Theorem 3. Suppose that \(\beta_1, \beta_2, m, r \geq 2, \alpha > 2, \rho > -1\) such that \(\beta_1, \beta_2 < \alpha\), and max \(\{m, r\} < 2(\rho + 2) < r_{\alpha}\), where \(r_{\alpha}\) is the Sobolev critical exponent of \(W^{1,\alpha}_0(\Omega)\), defined in (14). Assume further that
\[
E(0) < E_1, \quad \left(\|\nabla u_0\|_\alpha + \|\nabla v_0\|_\alpha\right)^{\frac{1}{\alpha}} > \zeta_1
\]
Then, any weak solution of (9)-(10) cannot exist for all time. Here the constants \(E_1\) and \(\zeta_1\) are defined in (3).

In order to prove our result and for the sake of simplicity, we take \(b_1 = b_2 = 1\) and introduce the following:
\[
B = \eta^{\frac{1}{2(\rho+2)}}, \quad \zeta_1 = B^{2(\rho+2) - \alpha}, \quad E_1 = \left(\frac{1}{\alpha} - \frac{1}{2(\rho+2)}\right) c_1^\alpha,
\] (19)
where \(\eta\) is the optimal constant in (15).

The following lemma allows us to prove a blow up result for a large class of initial data. This lemma is similar to the one in [20] and has its origin in [22]

Lemma 4 Let \((u, v)\) be a solution of (9)-(10). Assume that \(\alpha > 2, \rho > -1\). Assume further that \(E(0) < E_1\) and
\[
\left(\|\nabla u_0\|_\alpha + \|\nabla v_0\|_\alpha\right)^{\frac{1}{\alpha}} > \zeta_1.
\] (20)

Then there exists a constant \(\zeta_2 > \zeta_1\) such that
\[
\left(\|\nabla u\|_\alpha + \|\nabla v\|_\alpha\right)^{\frac{1}{\alpha}} > \zeta_2,
\] (21)
and
\[
\left[\|u + v\|_{2(\rho+2)}^2 + 2\|uv\|_{\rho+2}^2\right]^{\frac{1}{2(\rho+2)}} \geq B\zeta_2, \forall t \geq 0.
\] (22)
Proof. We first note that, by (13) and the definition of B, we have

$$
E(t) \geq \frac{1}{\alpha} \left(\|\nabla u\|_a^\alpha + \|\nabla v\|_a^\alpha \right) - \frac{1}{2(\rho + 2)} \left[|u + v|^{2(\rho + 2)} + 2|uv|^{\rho + 2} \right]
$$

$$
\geq \frac{1}{\alpha} \left(\|\nabla u\|_a^\alpha + \|\nabla v\|_a^\alpha \right) - \frac{\eta}{2(\rho + 2)} \left(\|\nabla u\|_a^\alpha + \|\nabla v\|_a^\alpha \right)^{2(\rho + 2)}/\alpha
$$

$$
\geq \frac{1}{\alpha} \zeta_a - \frac{\eta}{2(\rho + 2)} \zeta_a^{2(\rho + 2)}, \tag{23}
$$

where $\zeta = \left[\|\nabla u\|_a^\alpha + \|\nabla v\|_a^\alpha \right]^{\frac{1}{\alpha}}$. It is not hard to verify that g is increasing for $0 < \zeta < \zeta_1$, decreasing for $\zeta > \zeta_1$, $g(\zeta) \to -\infty$ as $\zeta \to +\infty$, and

$$
g(\zeta) = \frac{1}{\alpha} \zeta_a - \frac{B^2(\rho + 2)}{2(\rho + 2)} \zeta_a^{2(\rho + 2)} = E_1,
$$

where ζ_1 is given in (19). Therefore, since $E(0) < E_1$, there exists $\zeta_2 > \zeta_1$ such that $g(\zeta_2) = E(0)$.

If we set $\zeta_0 = \left[\|\nabla u(0)\|_a^\alpha + \|\nabla v(0)\|_a^\alpha \right]^{\frac{1}{\alpha}}$, then by (23) we have $g(\zeta_0) \leq E(0) = g(\zeta_2)$, which implies that $\zeta_0 \geq \zeta_2$.

Now, establish (21), we suppose by contradiction that

$$
\left(\|\nabla u(t_0)\|_a^\alpha + \|\nabla v(t_0)\|_a^\alpha \right)^{\frac{1}{\alpha}} < \zeta_2,
$$

for some $t_0 > 0$; by the continuity of $\|\nabla u(.)\|_a^\alpha + \|\nabla v(.)\|_a^\alpha$ we can choose t_0 such that

$$
\left(\|\nabla u(t_0)\|_a^\alpha + \|\nabla v(t_0)\|_a^\alpha \right)^{\frac{1}{\alpha}} > \zeta_1.
$$

Again, the use of (23) leads to

$$
E(t_0) \geq g \left(\|\nabla u(t_0)\|_a^\alpha + \|\nabla v(t_0)\|_a^\alpha \right) > g(\zeta_2) = E(0).
$$

This is impossible since $E(t) \leq E(0)$, for all $t \in [0, T)$. Hence, (21) is established.

To prove (22), we make use of (13) to get

$$
\frac{1}{\alpha} \left(\|\nabla u\|_a^\alpha + \|\nabla v\|_a^\alpha \right) \leq E(0) + \frac{1}{2(\rho + 2)} \left[|u + v|^{2(\rho + 2)} + 2|uv|^\rho + 2 \right].
$$

Consequently, (21) yields

$$
\frac{1}{2(\rho + 2)} \left[|u + v|^{2(\rho + 2)} + 2|uv|^\rho + 2 \right] \geq \frac{1}{\alpha} \left(\|\nabla u\|_a^\alpha + \|\nabla v\|_a^\alpha \right) - E(0)
$$

$$
\geq \frac{1}{\alpha} \zeta_a - E(0)
$$

$$
\geq \frac{1}{\alpha} \zeta_a - g(\zeta_2) \tag{24}
$$

$$
= \frac{B^2(\rho + 2)}{2(\rho + 2)} \zeta_a^{2(\rho + 2)}. \tag{24}
$$

Therefore, (24) and (19) yield the desired result. \hfill \Box

Proof. Proof of Theorem 3

We suppose that the solution exists for all time and set

$$
H(t) = E_1 - E(t).
$$

By using (13) and (25) we get

$$
H'(t) = \|\nabla u_t\|^\beta_1 + \|\nabla v_t\|^\beta_1 + \|\nabla u_t\|^\beta_2 + \|\nabla v_t\|^\beta_2 + a_1 \|u_t\|_m + a_2 \|v_t\|_r.
$$
We then exploit Young’s inequality to get for

Our goal is to show that

We then define

Then by (12), we have

We then define

for \(\varepsilon \) small to be chosen later and

Our goal is to show that \(L(t) \) satisfies the differential inequality (4). Indeed, taking the derivative of (28), using (9) and adding subtracting \(\varepsilon kH(t) \), we obtain

We then exploit Young’s inequality to get for \(\mu_i, \lambda_i, \delta_i > 0 \ i = 1, 2 \)

\[
\int_{\Omega} \nabla u \nabla u_i dx \leq \frac{1}{4\mu_1} \| \nabla u \|_2^2 + \mu_1 \| \nabla u_i \|_2^2
\]
\[
\int_\Omega \nabla v \nabla v_t dx \leq \frac{1}{4\mu_2} \|\nabla v\|_2^2 + \mu_2 \|\nabla v_t\|_2^2
\]
(31)

and

\[
\int_\Omega |\nabla u|^{|\beta_1|-1} \nabla u dx \leq \frac{\lambda_1^{|\beta_1|}}{\beta_1} \|\nabla u\|_{\beta_1}^{|\beta_1|} + \frac{\beta_1 - 1}{\beta_1} \lambda_1^{-|\beta_1|/(\beta_1 - 1)} \|\nabla u_t\|_{\beta_1}^{|\beta_1|}
\]

\[
\int_\Omega |\nabla v_t|^{|\beta_1|} \nabla v dx \leq \frac{\lambda_2^{|\beta_1|}}{\beta_2} \|\nabla v\|_{\beta_2}^{|\beta_1|} + \frac{\beta_2 - 1}{\beta_2} \lambda_2^{-|\beta_2|/(\beta_2 - 1)} \|\nabla v_t\|_{\beta_1}^{|\beta_1|}
\]
(32)

and also

\[
\int_\Omega |u_t|^{m-2} u_t u dx \leq \frac{\delta_1^m}{m} \|u_t\|_{m}^m + \frac{m - 1}{m} \delta_1^{-m/(m-1)} \|u_t\|_{m}^m
\]

and

\[
\int_\Omega |v_t|^{r-2} v_t v dx \leq \frac{\delta_2^r}{r} \|v_t\|_{r}^r + \frac{r - 1}{r} \delta_2^{-r/(r-1)} \|v_t\|_{r}^r
\]
(33)

A substitution of (31)-(33) in (30) and using (12) yields

\[
L'(t) \geq (1 - \sigma) H^{-\sigma}(t) H'(t) + \varepsilon k H(t) + \varepsilon \left(1 + \frac{k}{2}\right) \left(\|u_t\|_2^2 + \|v_t\|_2^2\right)
\]

\[
+ \varepsilon \left(\frac{c_0}{2(\rho + 2)} - \frac{k c_1}{2(\rho + 2)}\right) \left(\|u\|_{2(\rho + 2)}^2 + \|v\|_{2(\rho + 2)}^2\right) - \varepsilon k E_1
\]

\[
- \frac{\varepsilon}{4\mu_1} \|\nabla u\|_2^2 - \mu_1 \varepsilon \|\nabla u_t\|_2^2 - \frac{\varepsilon}{4\mu_2} \|\nabla v\|_2^2 - \varepsilon \mu_2 \|\nabla v_t\|_2^2
\]

\[
+ \varepsilon \left(\frac{k}{\alpha} - 1\right) \left(\|\nabla u\|_m^m + \|\nabla v\|_m^m\right) - \frac{\varepsilon \lambda_1^{|\beta_1|}}{\beta_1} \|\nabla u\|_{\beta_1}^{|\beta_1|} - \frac{\beta_1 - 1}{\beta_1} \lambda_1^{-|\beta_1|/(\beta_1 - 1)} \|\nabla u_t\|_{\beta_1}^{|\beta_1|}
\]

\[
- \frac{\varepsilon \lambda_2^{|\beta_2|}}{\beta_2} \|\nabla v\|_{\beta_2}^{|\beta_2|} - \varepsilon \frac{\beta_2 - 1}{\beta_2} \lambda_2^{-|\beta_2|/(\beta_2 - 1)} \|\nabla v_t\|_{\beta_2}^{|\beta_2|} - a_1 \varepsilon \frac{\delta_1^m}{m^{m-1}} \|u_t\|_{m}^m - a_2 \varepsilon \frac{\delta_2^r}{r^{r-1}} \|v_t\|_{r}^r
\]

\[
- a_1 \varepsilon \frac{m - 1}{m} \delta_1^{-m/(m-1)} \|u_t\|_{m}^m - a_2 \varepsilon \frac{r - 1}{r} \delta_2^{-r/(r-1)} \|v_t\|_{r}^r.
\]
(34)

Let us choose \(\delta_1, \delta_2, \mu_1, \mu_2, \lambda_1, \) and \(\lambda_2\) such that

\[
\delta_1^{-m/(m-1)} = M_1 H^{-\sigma}(t)
\]

\[
\delta_2^{-r/(r-1)} = M_2 H^{-\sigma}(t)
\]

\[
\mu_1 = M_3 H^{-\sigma}(t)
\]

\[
\mu_2 = M_4 H^{-\sigma}(t)
\]

\[
\lambda_1^{-|\beta_1|/(\beta_1 - 1)} = M_5 H^{-\sigma}(t)
\]

\[
\lambda_2^{-|\beta_2|/(\beta_2 - 1)} = M_6 H^{-\sigma}(t)
\]

for \(M_1, M_2, M_3, M_4, M_5\) and \(M_6\) large constants to be fixed later. Thus, by using (35),and for

\[
M = M_3 + M_4 + (\beta_1 - 1)M_5/\beta_1 + (\beta_2 - 1)M_6/\beta_2 + (m - 1)M_1/m + (r - 1)M_2/r
\]
then, inequality (34) takes the form
\[
L'(t) \geq ((1 - \sigma) - \varepsilon M) H^{-\sigma}(t) H'(t) + \varepsilon k H(t) + \varepsilon \left(1 + \frac{k}{2}\right) \left(\|u\|^2_m + \|v\|^2_m\right)
\]
\[
+ \varepsilon \left(\frac{c_0}{2(\rho + 2)} - \frac{kc_1}{2(\rho + 2)}\right) \left(\|u\|^{2(\rho + 2)}_m + \|v\|^{2(\rho + 2)}_m\right) - \varepsilon k E_1
\]
\[
+ \varepsilon \left(\frac{k}{\alpha} - 1\right) \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right)
\]
\[
- \frac{\varepsilon}{4M_4} H^\sigma(t) \|\nabla u\|^2_m - \frac{\varepsilon}{4M_4} H^\sigma(t) \|\nabla v\|^2_m
\]
\[
- \frac{\alpha_2 \varepsilon}{M_1} M_1^{-(m - 1)} H^{\sigma(m - 1)}(t) \|u\|^m_m - \frac{\alpha_2 \varepsilon}{r} M_2^{-(r - 1)} H^{\sigma(r - 1)}(t) \|v\|^r_r
\]
\[
- \frac{\varepsilon}{\beta_1} H^{\sigma(\beta_1 - 1)}(t) \|\nabla u\|^\beta_1_a - \frac{\varepsilon}{\beta_2} H^{\sigma(\beta_2 - 1)}(t) \|\nabla u\|^\beta_2_a.
\]
We then use the two embedding \(L^{2(\rho + 2)}(\Omega) \hookrightarrow L^m(\Omega)\), \(W_0^{1,\alpha} \hookrightarrow L^{2(\rho + 2)}(\Omega)\) and (27) to get
\[
H^{\sigma(m - 1)}(t) \|u\|^m_m \leq c_2 \left(\|u\|^{2\sigma(m - 1)(\rho + 2) + m}_m + \|v\|^{2\sigma(m - 1)(\rho + 2)}_m\right)
\]
\[
\leq c_2 \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right) \text{(37)}
\]
Similarly, the embedding \(L^{2(\rho + 2)}(\Omega) \hookrightarrow L^r(\Omega)\), \(W_0^{1,\alpha} \hookrightarrow L^{2(\rho + 2)}(\Omega)\) and (27) give
\[
H^{\sigma(r - 1)}(t) \|v\|^r_r \leq c_3 \left(\|u\|^{2\sigma(r - 1)(\rho + 2) + r}_m + \|v\|^{2\sigma(r - 1)(\rho + 2)}_m\right)
\]
\[
\leq c_3 \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right) \text{(38)}
\]
Furthermore, the two embedding \(W_0^{1,\alpha} \hookrightarrow L^{2(\rho + 2)}(\Omega)\), \(L^\sigma(\Omega) \hookrightarrow L^2(\Omega)\), yields
\[
H^\sigma(t) \|\nabla u\|^2_2 \leq c_4 \left(\|u\|^{2\sigma(\rho + 2)}_m \|\nabla u\|^2_2 + \|v\|^{2\sigma(\rho + 2)}_m \|\nabla u\|^2_2\right)
\]
\[
\leq c_4 \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right) \text{(39)}
\]
and
\[
H^\sigma(t) \|\nabla v\|^2_2 \leq c_5 \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right) \text{(40)}
\]
Since \(max(\beta_1, \beta_2) < \alpha\) then we have
\[
H^{\sigma(\beta_1 - 1)}(t) \|\nabla u\|^\beta_1_a \leq c_6 \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right) \text{(41)}
\]
and
\[
H^{\sigma(\beta_2 - 1)}(t) \|\nabla u\|^\beta_2_a \leq c_7 \left(\|\nabla u\|^\alpha_a + \|\nabla v\|^\alpha_a\right) \text{(42)}
\]
for some positive constants c_2, c_3, c_4, c_5, c_6 and c_7. By using (29) and the algebraic inequality

$$z'' \leq (z + 1) \leq (1 + \frac{1}{a}) (z + a), \quad \forall z \geq 0, \quad 0 < \nu \leq 1, \quad a \geq 0,$$

we have, for all $t \geq 0$,

$$\begin{cases}
\|\nabla u\|^{2(r-1)}_{\alpha} \|\nabla v\|_{\alpha} \leq C (\|\nabla v\|_{\alpha} + \|\nabla u\|_{\alpha}), \\
\|\nabla u\|^{2(r-1)}_{\alpha} \|\nabla v\|_{\alpha} \leq C (\|\nabla u\|_{\alpha} + \|\nabla v\|_{\alpha}), \\
\|\nabla u\|^{2(r+2)}_{\alpha} \|\nabla v\|_{\alpha} \leq C (\|\nabla v\|_{\alpha} + \|\nabla u\|_{\alpha}), \\
\|\nabla u\|^{2(r+2)}_{\alpha} \|\nabla v\|_{\alpha} \leq C (\|\nabla u\|_{\alpha} + \|\nabla v\|_{\alpha}), \\
\|\nabla v\|^{2(\beta_1-1)}_{\alpha} \|\nabla u\|_{\alpha} \leq C (\|\nabla v\|_{\alpha} + \|\nabla u\|_{\alpha}), \\
\|\nabla v\|^{2(\beta_2-1)}_{\alpha} \|\nabla u\|_{\alpha} \leq C (\|\nabla v\|_{\alpha} + \|\nabla u\|_{\alpha}), \\
\end{cases}$$

(45)

where $d = 1 + 1/H(0)$. Also keeping in mind the fact that $\max(m, r) < \alpha$, using Young’s inequality, the inequality (43) together with (29), we conclude

$$L'(t) \geq ((1 - \sigma) - \varepsilon M) H^{-\sigma} (t) H'(t) + \varepsilon \left(\left(k/\alpha - 1 - kE_{1}z^{\alpha} \right) - CM_{1}^{-(m-1)} - CM_{2}^{-(r-1)} \right) (\|\nabla u\|_{\alpha} + \|\nabla v\|_{\alpha})$$

$$+ \varepsilon \left(\left(k - CM_{1}^{-(m-1)} - CM_{2}^{-(r-1)} \right) - CM_{3}^{-(\beta_1-1)} - CM_{4}^{-(\beta_2-1)} \right) H(t)$$

$$+ \varepsilon \left(\frac{c_0}{2(\rho + 2)} - \frac{kc_1}{2(\rho + 2)} \right) (\|u\|^{2(\rho+2)} + \|v\|^{2(\rho+2)}),$$

(46)
for some constant k. Using $k = c_0/c_1$, we arrive at

$$L'(t) \geq ((1 - \sigma) - \varepsilon M) H^{-\sigma} (t) H'(t) + \varepsilon \left(1 + \frac{c_0}{2c_1} \right) \left(\| u_t \|_2^2 + \| v_t \|_2^2 \right)$$

$$+ \varepsilon \left(\varepsilon - CM_1^{(m-1)} - CM_2^{(r-1)} - \frac{C}{4} M_3^{-1} - \frac{C}{4} M_4^{-1} \right) (\| \nabla u \|_\alpha^\sigma + \| \nabla v \|_\alpha^\sigma)$$

$$- CM_5^{(\beta_1 - 1)} - CM_6^{(\beta_1 - 1)} - 1 \right) (\| \nabla u \|_\alpha^\sigma + \| \nabla v \|_\alpha^\sigma)$$

$$+ \varepsilon (c_0/c_1 - CM_1^{(m-1)} - CM_2^{(r-1)} - \frac{C}{4} M_3^{-1} - \frac{C}{4} M_4^{-1}$$

$$\quad - CM_5^{(\beta_1 - 1)} - CM_6^{(\beta_1 - 1)} \right) H(t),$$

where $\varepsilon = k/\alpha - 1 - k E_1 \zeta_2^{-2} = c_0/(c_1 \alpha) - 1 - (c_0/c_1) E_1 \zeta_2^{-2} > 0$ since $\zeta_2 > \zeta_1$.

At this point, and for large values of M_1, M_2, M_3, M_4, M_5 and M_6, we can find positive constants Λ_1 and Λ_2 such that (47) becomes

$$L'(t) \geq ((1 - \sigma) - M \varepsilon) H^{-\sigma} (t) H'(t) + \varepsilon \left(1 + \frac{c_0}{2c_1} \right) \left(\| u_t \|_2^2 + \| v_t \|_2^2 \right)$$

$$+ \varepsilon \Lambda_1 (\| \nabla u \|_\alpha^\sigma + \| \nabla v \|_\alpha^\sigma) + \varepsilon \Lambda_2 H(t).$$

Once M_1, M_2, M_3, M_4, M_5 and M_6 are fixed (hence, Λ_1 and Λ_2), we pick ε small enough so that $(1 - \sigma) - M \varepsilon \geq 0$ and

$$L(0) = H^{1-\sigma}(0) + \int_\Omega [u_0, u_t + v_0, v_t] \, dx > 0.$$

From these and (48) becomes

$$L'(t) \geq \varepsilon \Gamma (H(t) + \| u_t \|_2^2 + \| v_t \|_2^2 + \| \nabla u \|_\alpha^\sigma + \| \nabla v \|_\alpha^\sigma).$$

Thus, we have $L(t) \geq L(0) > 0$, for all $t \geq 0$. Next, by Holder’s and Young’s inequalities, we estimate

$$\left(\int_\Omega u \cdot u_t (x, t) \, dx + \int_\Omega v \cdot v_t (x, t) \, dx \right) \frac{1}{1-\sigma}$$

$$\leq C \left(\| u \|_2^{1-\sigma} + \| u_t \|_2^{\frac{s}{2\rho + 2}} + \| v \|_2^{1-\sigma} + \| v_t \|_2^{\frac{s}{2\rho + 2}} \right)$$

$$\leq C \left(\| \nabla u \|_\alpha^\frac{\tau}{1-\sigma} + \| u_t \|_2^{\frac{s}{1-\sigma}} + \| \nabla v \|_\alpha^\frac{\tau}{1-\sigma} + \| v_t \|_2^\frac{s}{1-\sigma} \right)$$

for $\frac{1}{\tau} + \frac{1}{s} = 1$. We take $s = 2(1-\sigma)$, to get $\frac{\tau}{1-\sigma} = \frac{2}{1-2\sigma}$. By using (29) and (43) we get

$$\frac{2}{\alpha^{(1-2\sigma)} } \| \nabla u \|_\alpha < d (\| \nabla u \|_\alpha + H(t)),$$

and

$$\frac{2}{\alpha^{(1-2\sigma)} } \| \nabla v \|_\alpha < d (\| \nabla v \|_\alpha + H(t)), \forall t \geq 0.$$
Therefore, (50) becomes
\[
\left(\int_{\Omega} u_u(x,t) \, dx + \int_{\Omega} v_v(x,t) \, dx \right)^{\frac{1}{1-\sigma}} \leq C \left(\| \nabla u \|^\alpha + \| \nabla v \|^\alpha + \| u_t \|^2 + \| v_t \|^2 + H(t) \right), \quad \forall t \geq 0.
\]
(51)

Also, since
\[
L^{\frac{1}{1-\sigma}}(t) = \left(H^{1-\sigma}(t) + \varepsilon \int_{\Omega} (u_u + v_v) (x,t) \, dx \right)^{\frac{1}{1-\sigma}} \leq C \left(H(t) + \left(\int_{\Omega} (u_u + v_v) (x,t) \, dx \right)^{\frac{1}{1-\sigma}} \right) \leq C \left(H(t) + \| \nabla u \|^\alpha + \| \nabla v \|^\alpha + \| u_t \|^2 + \| v_t \|^2 \right), \quad \forall t \geq 0,
\]
combining with (52) and (49), we arrive at
\[
L'(t) \geq a_0 L^{\frac{1}{1-\sigma}}(t), \quad \forall t \geq 0.
\]
(53)

Finally, a simple integration of (53) gives the desired result. This completes the proof of Theorem (3).

\[\square \]

References

[19] B. Said-Houari. Global existence and decay of solutions of a nonlinear system of wave equa-

Abdelaziz Rahmoune
Mathematic department, Biskra University BP 145 RP, 07000 Biskra, Algeria
Laboratoire de Mathematique Pures et Appliquees, Laghouat

E-mail address: a.rahmoune@lagh-univ.dz

Djamel Ouchenane
Mathematic department, Annaba University, PO Box 12, Annaba, 23000, Algeria

E-mail address: ouchenanedjamel@gmail.com