ON SOME IDENTITIES AND SYMMETRIC FUNCTIONS FOR
LUCAS AND PELL NUMBERS

ALI BOUSSAYOUD, MERIAMA BOULYER AND MOHAMED KERADA

Abstract. In this paper, we show how the action of the symmetrizing endomorphism operator $\delta_{e_1 e_2}$ to the series $\sum_{n=0}^{\infty} a_n e_1^a z^n$ allows us to obtain an alternative approach for the determination of Fibonacci and Lucas-Pell numbers.

1. Introduction and Notations

The second-order linear recurrence sequence $(U_n(a, b; p, q))_{n \geq 0}$, or briefly $(U_n)_{n \geq 0}$, is defined by

$$U_{n+2} = pU_{n+1} + qU_n, \quad U_0 = a, \quad U_1 = b.$$

Where a, b and p, q are arbitrary real numbers for $n > 0$. The Binet formula for the sequence $(U_n)_{n \geq 0}$ is

$$U_n = \frac{c_1 x_1^n - c_2 x_2^n}{x_1 - x_2},$$

where $c_1 = b - ax_2$ and $c_2 = b - ax_1$. Certain sequence of numbers that appeared here are Fibonacci number $(F_n)_{n \geq 0}$, if we take $p = q = b = 1, a = 2$, Lucas number $(L_n)_{n \geq 0}$ for $p = 2, q = b = 1, a = 0$, Pell number $(P_n)_{n \geq 0}$ and Pell-Lucas number $(Q_n)_{n \geq 0}$, when one has $p = b = a = 2, q = 1$. In this paper, we show that the use of the action of the symmetric endomorphism operator $\delta_{e_1 e_2}$ to the series $\sum_{n=0}^{\infty} a_n (e_1 z)^n$, gives an alternative approach for determining the generating functions of some sequences of numbers cited above.

Let k and n be two positive integer and $\{x_1, x_2, ..., x_n\}$ are set of given variables, recall [8] that the k-th elementary symmetric function $e_k(x_1, x_2, ..., x_n)$ and the k-th complete homogeneous symmetric function $h_k(x_1, x_2, ..., x_n)$ are defined respectively by

$$e_k(x_1, x_2, ..., x_n) = \sum_{i_1 + i_2 + ... + i_n = k} x_1^{i_1} x_2^{i_2} ... x_n^{i_n}, \quad 0 \leq k \leq n.$$
with $i_1, i_2, \ldots, i_n = 0$ or 1.

$$h_k(x_1, x_2, \ldots, x_n) = \sum_{i_1 + i_2 + \cdots + i_n = k} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}, \quad 0 \leq k \leq n,$$

with $i_1, i_2, \ldots, i_n \geq 0$.

First, we set $e_0(x_1, x_2, \ldots, x_n) = 1$ and $h_0(x_1, x_2, \ldots, x_n) = 1$ (by convention). For $k > n$ or $k < 0$, we set $e_k(x_1, x_2, \ldots, x_n) = 0$ and $h_k(x_1, x_2, \ldots, x_n) = 0$.

Lemma 1 [10] The relations

1) $F_{-n} = (-1)^{n+1} F_n,$
2) $L_{-n} = (-1)^n L_n,$
3) $P_{-n} = (-1)^{n+1} P_n,$
4) $Q_{-n} = (-1)^n Q_n$

hold for all $n \geq 0$.

Definition 1 Let A and E be any two alphabets, then we give $S_n(A - E)$ by the following form:

$$\prod_{x \in E} (1 - ez) \prod_{x \in A} (1 - az) = \sum_{n=0}^{\infty} S_n(A - E) z^n,$$

with the condition $S_n(A - E) = 0$ for $n < 0$ (see [1]).

Corollary 1 Taking $A = 0$ in (1.1), that gives

$$\prod_{x \in E} (1 - ez) = \sum_{n=0}^{\infty} S_n(-E) z^n. \quad (2)$$

Definition 2 [7] Given a function g on \mathbb{R}^n, the divided difference operator is defined as follows:

$$\partial_{x_i; x_{i+1}}(g) = \frac{g(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) - g(x_1, \ldots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \ldots, x_n)}{x_i - x_{i+1}}.$$

It should be noted that the divided difference operator $\partial_{x_i; x_{i+1}}$ commutes with symmetric functions at x_i, x_{i+1} and is compatible with the function S_n [6].

Definition 3 [2] The symmetrizing operator $\delta^{k}_{e_1 e_2}$ is defined by

$$\delta^{k}_{e_1 e_2}(f) = \frac{e_1^k f(e_1) - e_2^k f(e_2)}{e_1 - e_2} \text{ for all } k \in \mathbb{N}.$$

Proposition 1 [3] Let $E = \{e_1, e_2\}$ an alphabet, we define the operator $\delta^{k}_{e_1 e_2}$ as follows:

$$\delta^{k}_{e_1 e_2} f (e_1) = S_{k-1}(e_1 + e_2) f (e_1) + e_2^k \partial_{e_1 e_2} f (e_1), \text{ for all } k \in \mathbb{N}.$$

2. The Main Result

In our main result, we will combine all these results in a unified way such that all these obtained results can be treated as special case of the following Theorem.
Theorem 1
Given an alphabet $E = \{e_1, e_2\}$ and two sequences $\sum_{n=0}^{+\infty} a_n z^n$, $\sum_{n=0}^{+\infty} b_n z^n$ such that $\left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right) = 1$, then

$$\sum_{n=0}^{+\infty} a_n \delta_{e_1 e_2}^{k+n-1} (e_1) z^n = \frac{\sum_{n=0}^{k-1} b_n (e_1 e_2)^n \delta_{e_1 e_2}^{k-n} (e_1^{-1}) z^n - (e_1 e_2)^k \sum_{n=0}^{+\infty} b_{n+k+1} \delta_{e_1 e_2} (e_1^n) z^{n+1}}{\left(\sum_{n=0}^{+\infty} b_n e_1^n z^n\right) \left(\sum_{n=0}^{+\infty} b_n e_2^n z^n\right)}.$$ (3)

Proof. Let $\sum_{n=0}^{+\infty} a_n z^n$ and $\sum_{n=0}^{+\infty} b_n z^n$ be two sequences as $\sum_{n=0}^{+\infty} a_n z^n \times \sum_{n=0}^{+\infty} b_n z^n = 1$.

On one hand, since $f(e_1) = \sum_{n=0}^{+\infty} a_n e_1^n z^n$, we have

$$\delta_{e_1 e_2}^k f (e_1) = \delta_{e_1 e_2}^k \left(\sum_{n=0}^{+\infty} a_n e_1^n z^n\right) = \sum_{n=0}^{+\infty} a_n \delta_{e_1 e_2}^{k+n-1} (e_1) z^n,$$

which is the left hand side of (3). On the other hand, since

$$f(e_1) = \frac{1}{\sum_{n=0}^{+\infty} b_n e_1^n z^n},$$

we have that

$$\partial_{e_1 e_2} f(e_1) = \frac{1}{e_1 - e_2} \left(\sum_{n=0}^{+\infty} b_n e_1^n z^n - \sum_{n=0}^{+\infty} b_n e_2^n z^n\right) = \frac{1}{e_1 - e_2} \left(\sum_{n=0}^{+\infty} b_n e_1^n z^n - \sum_{n=0}^{+\infty} b_n e_2^n z^n\right) = \frac{\sum_{n=0}^{+\infty} b_n e_1^n z^n \sum_{n=0}^{+\infty} b_n e_2^n z^n}{\left(\sum_{n=0}^{+\infty} b_n e_1^n z^n\right) \left(\sum_{n=0}^{+\infty} b_n e_2^n z^n\right)}.$$
By Proposition 1, it follows that
\[
\delta_{e_1e_2}^k f(e_1) = S_{k-1}(e_1 + e_2)f(e_1) + e_2^k\partial_{e_1}^2 f(e_1)
\]
\[
= S_{k-1}(e_1 + e_2) - e_2^k \sum_{n=0}^\infty b_n S_{n-1}(e_1 + e_2) z^n
\]
\[
= \sum_{n=0}^\infty b_n \left[e_2^k S_{k-1}(e_1 + e_2) - e_2^k S_{n-1}(e_1 + e_2) \right] z^n
\]
\[
\left(\sum_{n=0}^\infty b_n e_1^n z^n \right) \left(\sum_{n=0}^\infty b_n e_2^n z^n \right)
\]

Hence, we have that
\[
\delta_{e_1e_2}^k f(e_1) = \sum_{n=0}^{k-1} b_n (e_1 e_2)^k \delta_{e_1e_2}(e_1)^{-1} z^n - (e_1 e_2)^k \sum_{n=0}^\infty b_{n+k+1} \delta_{e_1e_2}(e_1)^n z^{n+1}
\]
\[
\left(\sum_{n=0}^\infty b_n e_1^n z^n \right) \left(\sum_{n=0}^\infty b_n e_2^n z^n \right)
\]

This completes the proof.

3. ON THE SYMMETRIC FUNCTIONS OF SOME NUMBERS

In this part, we derive the new generating functions of some known numbers. Indeed, we consider Theorem 1 in order to get Fibonacci numbers, Lucas numbers and Pell-Lucas numbers with \(k = 1 \) and \(k = 2 \), for the case \(\frac{1}{1+z} = \sum_{n=0}^\infty (-1)^n z^n \).

Lemma 2 Given an alphabet \(E = \{e_1, e_2\} \), we have
\[
\sum_{n=0}^\infty (-1)^n h_n(e_1, e_2) z^n = \frac{1}{(1+e_1 z)(1+e_2 z)}, \quad \text{with} \quad h_n(e_1, e_2) = S_n(e_1 + e_2).
\]

Lemma 3 Given an alphabet \(E = \{e_1, e_2\} \), we have
\[
\sum_{n=0}^\infty (-1)^n h_{n+1}(e_1, e_2) z^n = \frac{e_1 + e_2 + e_1 e_2 z}{(1+e_1 z)(1+e_2 z)}, \quad \text{with} \quad h_{n+1}(e_1, e_2) = S_{n+1}(e_1 + e_2).
\]

By replacing \(e_2 \) by \(-e_2 \) in (4) and (5), we obtain
\[
\sum_{n=0}^\infty (-1)^n S_n(e_1 + [-e_2]) z^n = \frac{1}{1+(e_1 - e_2) z - e_1 e_2 z^2},
\]

\[
\sum_{n=0}^\infty (-1)^n S_{n+1}(e_1 + [-e_2]) z^n = \frac{e_1 - e_2 - e_1 e_2 z}{1+(e_1 - e_2) z - e_1 e_2 z^2}.
\]
Choosing e_1 and e_2 such that \[
\begin{align*}
e_1 e_2 &= 1 \\
e_1 - e_2 &= 1
\end{align*}
\] and substituting in (6) and (7) we get
\[
\sum_{n=0}^{\infty} F_n z^n = \frac{1}{z^2 - z - 1},
\]
which represent a generating function for Fibonacci numbers such that $F_{-n} = (-1)^{n+1} S_n (e_1 + [-e_2])$.
\[
\sum_{n=0}^{\infty} (-1)^n S_{n+1} (e_1 + [-e_2]) z^n = \frac{1 - z}{1 + z - z^2},
\]
which is given by Boussayoud et al [3].

Corollary 2 For $n \in \mathbb{N}$, we have
\[
S_{n+2} (e_1 + [-e_2]) = S_{n+1} (e_1 + [-e_2]) + S_n (e_1 + [-e_2]).
\]
Choosing e_1 and e_2 such that \[
\begin{align*}
e_1 e_2 &= 1 \\
e_1 - e_2 &= 2
\end{align*}
\] and substituting in (6) and (7), where we have
\[
\sum_{n=0}^{\infty} (-1)^n S_n (e_1 + [-e_2]) z^n = \frac{1}{1 + 2z - z^2},
\]
which yields also new generating functions.
\[
\sum_{n=0}^{\infty} (-1)^n S_{n+1} (e_1 + [-e_2]) z^n = \frac{2 - z}{1 + 2z - z^2},
\]
Multiplying the equation (8) by 3 and subtract it from (9) we get
\[
\sum_{n=0}^{\infty} L_n z^n = \frac{2 + z}{1 + z - z^2},
\]
which represents a new generating function for Lucas Numbers.

Corollary 3 For all $n \in \mathbb{N}$, we have
\[
L_{-n} = (-1)^n \left[3 S_{n+1} (e_1 + [-e_2]) - S_{n+1} (e_1 + [-e_2]) \right].
\]
Multiplying the equation (10) by (-2) and added to (11) we obtain
\[
\sum_{n=0}^{\infty} P_n z^n = \frac{z}{1 + 2z - z^2},
\]
which represents a new generating function for Pell Numbers.

Corollary 4 For all $n \in \mathbb{N}$, we have
\[
P_{-n} = (-1)^{n+1} \left[S_{n+1} (e_1 + [-e_2]) - 2 S_n (e_1 + [-e_2]) \right].
\]
Multiplying the equation (10) by 6 and added to (11) by (-2), we have
\[
\sum_{n=0}^{\infty} Q_n z^n = \frac{2 + 2z}{1 + 2z - z^2},
\]
which represents a new generating function for Pell-Lucas Numbers.

Corollary 5 For all $n \in \mathbb{N}$, we have
\[
P_{-n} = (-1)^n \left[6 S_n (e_1 + [-e_2]) - 2 S_{n+1} (e_1 + [-e_2]) \right].
\]

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions.
References

Ali Boussayoud, LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria
E-mail address: aboussayoud@yahoo.fr

Meriama Boulyer, Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria
E-mail address: meriama882014@outlook.fr

Mohamed Kerada, LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria
E-mail address: mkerada@yahoo.fr, mkerad9@gmail.com