A NEW SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY DERIVATIVE OPERATOR

SAURABH PORWAL AND SHIVAM KUMAR

ABSTRACT. In the present paper, we introduce a new subclass of harmonic univalent functions in the unit disc U by using Derivative operator. Also, we obtain coefficient conditions, distortion bounds, convolution conditions, convex combinations, extreme points and discuss a class preserving integral operator. Relevant connections of the results presented here with various known results are briefly indicated.

1. INTRODUCTION

A continuous complex-valued function $f = u + iv$ is said to be harmonic in a complex domain D if both u and v are real harmonic in D. In any simply-connected domain $D \subset C$, we can write $f = h + \overline{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|$ in D, see [4].

Denote by $S_{H}(j)$, the class of functions $f = h + \overline{g}$ that are harmonic, univalent and sense-preserving in the open unit disk $U = \{z : z \in C \text{ and } |z| < 1\}$ with normalization $f(0) = h(0) = f_{z}(0) - 1 = 0$. Then for $f = h + \overline{g} \in S_{H}(j)$, we may express the analytic functions h and g as

$$h(z) = z + \sum_{k=j+1}^{\infty} a_{k}z^{k}, \quad g(z) = \sum_{k=1}^{\infty} b_{k}z^{k}, \quad |b_{1}| < 1. \quad (1.1)$$

For $j = 1$ the class $S_{H}(j)$ reduce to the class S_{H} of harmonic univalent functions in U and for $j = 1, g \equiv 0$ it reduce to the class S of normalized analytic univalent functions.

Al-Shaqsi and Darus [3] introduced the derivative operator for functions f of the form (1.1) as:

$$D_{\lambda}^{n}f(z) = D_{\lambda}^{n}h(z) + (-1)^{n}D_{\lambda}^{n}\overline{g(z)}, \; n, \lambda \in N_{0} = N \cup \{0\}, \; z \in U, \quad (1.2)$$

where

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Harmonic, univalent functions, Derivative operator.

Submitted April 10, 2015.
obtain the following known subclasses studied earlier by various researchers.

By assigning specific values to $n, \lambda, j, \alpha, \rho$ we have

$$D_\lambda^h(z) = z + \sum_{k=j+1}^{\infty} k^n C(\lambda, k) a_k z^k, \quad D_\lambda^g(z) = \sum_{k=1}^{\infty} k^n C(\lambda, k) b_k z^k$$

and $C(\lambda, k) = (k+\lambda^{-1})$.

It is easy to see that for $\lambda = 0$ the operator D_λ^h reduce to the modified Salagean derivative operator introduced by Jahangiri et al. [6].

Now we introduce the class $G_H(n, \lambda, j, \alpha, \rho, t)$ of functions of the form (1.1) that satisfy the following condition

$$\Re \left\{ (1 + pe^{i\eta}) \frac{D_\lambda^{n+1} f(z)}{D_\lambda^n f(z)} - pe^{i\eta} \right\} > \alpha,$$

where $0 \leq \alpha < 1, \eta \in R, \rho \geq 0, j \in N, n, \lambda \in N_0, 0 \leq t \leq 1, f(z) = (1-t)z + tf(z)$ and $D_\lambda^n f(z)$ is defined by (1.2).

Let $\mathcal{G}_H(n, \lambda, j, \alpha, \rho, t)$ denote the subclass of $G_H(n, \lambda, j, \alpha, \rho, t)$ consisting of harmonic functions $f_n = h + \mathcal{G}_n$ such that h and \mathcal{G}_n are of the form

$$h(z) = z - \sum_{k=j+1}^{\infty} |a_k| z^k, \quad \mathcal{G}_n(z) = (-1)^n \sum_{k=1}^{\infty} |b_k| z^k.$$

Assigning specific values to $n, \lambda, j, \alpha, \rho$ and t in the subclass $G_H(n, \lambda, j, \alpha, \rho, t)$, we obtain the following known subclasses studied earlier by various researchers.

(i) $G_H(n, \lambda, 1, \alpha, \rho, t)$ studied by Pathak et al. [9].
(ii) $G_H(n, \lambda, 1, \alpha, 0, t)$ studied by Al-Shaqi and Darus [3].
(iii) $G_H(n, 0, 1, \alpha, 1, t)$ studied by Yalcin et al. [13].
(iv) $G_H(0, \lambda, 1, \alpha, 0, t)$ studied by Murugusundaramoorthy and Vijaya [8].
(v) $G_H(0, 1, 1, \alpha, 1, t)$ studied by Rosy et al. [10].
(vi) $G_H(0, 0, 1, \alpha, 0, t)$ studied by Jahangiri [5].
(vii) $G_H(1, 0, 1, \alpha, 0, t)$ studied by Jahangiri [5].
(viii) $G_H(0, 0, 1, \alpha, 0, 1)$ studied by Jahangiri et al. [6].
(ix) $G_H(1, 0, 1, \alpha, 1, 1)$ studied by Kim et al. [7].
(x) $G_H(0, 0, 1, \alpha, 1, 1)$ studied by Ahuja et al. [2].
(xi) $G_H(1, 0, 1, \alpha, 0, 0)$ studied by Ahuja and Jahangiri [1].

In the present paper, we obtain coefficient condition, distortion bound, extreme points, convolution and convex combination. Finally we discuss a class preserving integral operator for this class.

2. Coefficient Bound

We begin with a sufficient coefficient condition for functions in $G_H(n, \lambda, j, \alpha, \rho, t)$.

Theorem 2.1. Let $f = h + \mathcal{G}$ be given by (1.1). If

$$\sum_{k=j+1}^{\infty} \{k(1+\rho) - t(\alpha + \rho)\} |a_k| k^n C(\lambda, k) + \sum_{k=1}^{\infty} \{k(1+\rho) + t(\alpha + \rho)\} |b_k|$$

$$k^n C(\lambda, k) \leq 1 - \alpha,$$ (2.1)
where $n, \lambda \in \mathbb{N}_0, j \in \mathbb{N}, C(\lambda, k) = (k^\lambda + 1)$, $\rho \geq 0$, $0 \leq t \leq 1$ and $0 \leq \alpha < 1$, then f is sense-preserving, harmonic univalent in U and $f \in G_H(n, \lambda, j, \rho, t)$.

Proof. If $z_1 \neq z_2$, then

$$
\frac{|f(z_1) - f(z_2)|}{|h(z_1) - h(z_2)|} \geq 1 - \frac{|g(z_1) - g(z_2)|}{|h(z_1) - h(z_2)|} = 1 - \frac{\sum_{k=1}^{\infty} b_k (z_1^k - z_2^k)}{(z_1 - z_2) + \sum_{k=j+1}^{\infty} a_k (z_1^k - z_2^k)}
$$

$$
> 1 - \frac{\sum_{k=1}^{\infty} k|b_k|}{\sum_{k=j+1}^{\infty} k|a_k|}
$$

$$
> 1 - \frac{\sum_{k=1}^{\infty} [k(1 + \rho) + t(\alpha + \rho)]k^{n}C(\lambda, k)|b_k|}{\sum_{k=j+1}^{\infty} [k(1 + \rho) - t(\alpha + \rho)]k^{n}C(\lambda, k)|a_k|}
$$

$$
\geq 1 - \frac{\sum_{k=1}^{\infty} [k(1 + \rho) + t(\alpha + \rho)]k^{n}C(\lambda, k)|b_k|}{1 - \alpha}
$$

$$
\geq 0
$$

which proves univalence. Note that f is sense-preserving in U. This is because

$$
|h'(z)| \geq 1 - \sum_{k=j+1}^{\infty} k|a_k||z|^{k-1}
$$

$$
> 1 - \sum_{k=j+1}^{\infty} \frac{[k(1 + \rho) - t(\alpha + \rho)]k^{n}C(\lambda, k)|a_k|}{1 - \alpha}
$$

$$
\geq \sum_{k=1}^{\infty} \frac{[k(1 + \rho) + t(\alpha + \rho)]k^{n}C(\lambda, k)|b_k|}{1 - \alpha}
$$

$$
\geq \sum_{k=1}^{\infty} \frac{[k(1 + \rho) + t(\alpha + \rho)]k^{n}C(\lambda, k)|b_k||z|^{k-1}}{1 - \alpha}
$$

$$
\geq \sum_{k=1}^{\infty} k|b_k||z|^{k-1} \geq |g'(z)|.
$$
Using the fact that $\Re w > \alpha$, if and only if $|1 - \alpha + w| \geq |1 + \alpha - w|$ it suffices to show that

$$
|(1 - \alpha) + (1 + \rho e^{i\eta}) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} - \rho e^{i\eta}| - |(1 + \alpha) - (1 + \rho e^{i\eta}) \frac{D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} + \rho e^{i\eta}| \geq 0. \tag{2.4}
$$

Substituting the values of $D_{\lambda}^{n+1} f(z)$ and $D_{\lambda}^{n} f(z)$ in (2.4), we obtain

$$
|(1 - \alpha - \rho e^{i\eta})D_{\lambda}^{n} f(z) + (1 + \rho e^{i\eta})D_{\lambda}^{n+1} f(z)| - \\
| - (1 + \alpha + \rho e^{i\eta})D_{\lambda}^{n} f(z) + (1 + \rho e^{i\eta})D_{\lambda}^{n+1} f(z)|
$$

$$
= |(2 - \alpha)z + \sum_{k=j+1}^{\infty} \{k(1 + \rho e^{i\eta}) + t(1 - \alpha - \rho e^{i\eta})\}k^n C(\lambda, k) a_k z^k - a_k z^k + (-1)^n \sum_{k=j+1}^{\infty} \{k(1 + \rho e^{i\eta}) - t(1 - \alpha + \rho e^{i\eta})\}k^n C(\lambda, k)b_k z^k - \\
- | - \alpha z + \sum_{k=j+1}^{\infty} \{k(1 + \rho e^{i\eta}) - t(1 + \alpha + \rho e^{i\eta})\}k^n C(\lambda, k)a_k z^k - a_k z^k - (-1)^n \sum_{k=1}^{\infty} \{k(1 + \rho e^{i\eta}) + t(1 + \alpha + \rho e^{i\eta})\}k^n C(\lambda, k)b_k z^k |
$$

$$
\geq 2(1 - \alpha)|z| \left[1 - \sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)\}k^n C(\lambda, k)|a_k||z|^{k-1}}{1 - \alpha} - \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)\}k^n C(\lambda, k)|b_k||z|^{k-1}}{1 - \alpha} \right]
$$

$$
> 2(1 - \alpha)|z| \left[1 - \sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)\}k^n C(\lambda, k)|a_k|}{1 - \alpha} - \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)\}k^n C(\lambda, k)|b_k|}{1 - \alpha} \right]. \tag{2.5}
$$

This last expressions is non-negative by (2.1), and so the proof is completed.

The harmonic function

$$
f(z) = z + \sum_{k=j+1}^{\infty} \frac{(1 - \alpha)}{k(1 + \rho) - t(\alpha + \rho)\}k^n C(\lambda, k)|a_k|}x_k z^k + \sum_{k=1}^{\infty} \frac{(1 - \alpha)}{k(1 + \rho) + t(\alpha + \rho)\}k^n C(\lambda, k)|b_k|}y_k z^k \tag{2.6}
$$
where \(n, \lambda \in \mathbb{N}_0, j \in \mathbb{N}, 0 \leq t \leq 1, \rho \geq 0, 0 \leq \alpha < 1 \) and \(\sum_{k=j+1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1 \) shows that the coefficient bound given by (2.1) is sharp. The functions of the form (2.6) are in \(G_H(n, \lambda, j, \alpha, \rho, t) \) because

\[
\sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |a_k| + \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |b_k| = \sum_{k=j+1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = 1. \tag{2.7}
\]

In the following theorem, it is shown that the condition (2.1) is also necessary for functions \(f_n = h + g_n \), where \(h \) and \(g_n \) are of the form (1.4).

Theorem 2.2. Let \(f_n = h + g_n \) be given by (1.4). Then \(f_n \in G_H(n, \lambda, j, \alpha, \rho, t) \), if and only if

\[
\sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |a_k| + \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |b_k| \leq 1, \tag{2.8}
\]

where \(n, \lambda \in \mathbb{N}_0, j \in \mathbb{N}, C(\lambda, k) = \binom{k+\lambda-1}{\lambda}, \rho \geq 0, 0 \leq \alpha < 1, 0 \leq t \leq 1 \).

Proof. Since \(G_H(n, \lambda, j, \alpha, \rho, t) \subset G_H(n, \lambda, j, \alpha, \rho, t) \), we only need to prove the “only if” part of the theorem. To this end, for functions \(f_n \) of the form (1.4), we
notice that the condition \((1.3)\) is equivalent to

\[
\Re \left\{ \frac{(1 + \rho e^{i\eta}) D_{\lambda}^{n+1} f(z)}{D_{\lambda}^{n} f(z)} - (\rho e^{i\eta} + \alpha) \right\} \geq 0
\]

\[
\Rightarrow \Re \left\{ \frac{(1 + \rho e^{i\eta}) D_{\lambda}^{n+1} f(z) - (\rho e^{i\eta} + \alpha) D_{\lambda}^{n} f(z)}{D_{\lambda}^{n} f(z)} \right\} \geq 0
\]

\[
\Rightarrow \Re \left\{ \left(1 + \rho e^{i\eta}\right) \left(z - \sum_{k=j+1}^{\infty} k^{n+1} C(\lambda, k) |a_k| z^k + (-1)^{2n+1} \sum_{k=1}^{\infty} k^{n+1} |b_k| C(\lambda, k) \frac{z^k}{k} \right) - (\rho e^{i\eta} + \alpha) \left(z - \sum_{k=j+1}^{\infty} k^n C(\lambda, k) t|a_k| z^k + (-1)^{2n} \sum_{k=1}^{\infty} k^n t|b_k| C(\lambda, k) \frac{z^k}{k} \right) \right\} \geq 0
\]

\[
\Rightarrow \Re \left\{ \left(1 - \alpha\right) z - \sum_{k=j+1}^{\infty} k^n \left(1 + \rho e^{i\eta}\right) - t \left(\rho e^{i\eta} + \alpha\right) C(\lambda, k) |a_k| z^k + (-1)^{2n+1} \sum_{k=1}^{\infty} k^n |b_k| C(\lambda, k) \frac{z^k}{k} \right\} \geq 0
\]

\[
\Rightarrow \Re \left\{ \left(1 - \alpha\right) - \sum_{k=j+1}^{\infty} k^n \left(1 + \rho e^{i\eta}\right) - t \left(\rho e^{i\eta} + \alpha\right) C(\lambda, k) |a_k| z^{k-1} - \sum_{k=j+1}^{\infty} k^n C(\lambda, k) t|a_k| z^{k-1} + \frac{z}{n} (-1)^{2n} \sum_{k=1}^{\infty} k^n C(\lambda, k) t|b_k| z^{k-1} - \sum_{k=j+1}^{\infty} k^n C(\lambda, k) t|b_k| z^{k-1} \right\} \geq 0
\]
The above condition \[(2.9) \] must hold for all values of \(z \) on the positive real axes, where, \(0 \leq |z| = r < 1 \), we must have

\[
\Re \left\{ \left(1 - \sum_{k=j+1}^{\infty} k^n (k-t\alpha)C(\lambda, k) |a_k|^r k^{-1} - (-1)^2n \sum_{k=1}^{\infty} k^n (k+t\alpha)C(\lambda, k) |b_k|^r k^{-1} \right) \right\} \geq 0
\]

Since \(\Re(-e^{i\eta}) \geq -|e^{i\eta}| = -1 \), the above inequality reduce to

\[
\left\{ (1 - \sum_{k=j+1}^{\infty} k^n \{k(1+\rho) - t(\rho + \alpha)\} C(\lambda, k) |a_k|^r k^{-1} - \sum_{k=1}^{\infty} k^n \{k(1+\rho) + t(\rho + \alpha)\} C(\lambda, k) |b_k|^r k^{-1} \right\}^{-1} \geq 0. \tag{2.10}
\]

If the condition \[(2.8) \] does not hold, then the numerator in \[(2.10) \] is negative for \(r \) sufficiently close to 1. Hence there exist \(a, z_0 = r_0 \) in \((0,1)\) for which the quotient in \[(2.10) \] is negative. This contradicts the condition for \(f_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \) and so the proof is complete.

\[\square \]

3. Distortion Bounds

In this section, we will obtain distortion bounds for functions in \(\overline{G}_H(n, \lambda, j, \alpha, \rho, t) \).

Theorem 3.1. Let \(f_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \). Then for \(|z| = r < 1 \), we have

\[
|f_n(z)| \leq (1 + |b_1| + |b_2| |r| + \ldots + |b_j||r^{j-1}|)^r + \frac{1 - \alpha}{(j+1)(1+\rho) - t(\rho + \alpha)} C(\lambda,j+1) \frac{1}{1 - \alpha} |b_j| j^n C(\lambda,j) \] \[(j+1) \]

\[
|f_n(z)| \geq (1 - |b_1| - |b_2| |r| - \ldots - |b_j||r^{j-1}|)^r - \frac{1 - \alpha}{(j+1)(1+\rho) - t(\rho + \alpha)} C(\lambda,j+1) \frac{1}{1 - \alpha} |b_j| j^n C(\lambda,j) \] \[(j+1) \]
Proof. We only prove the left-hand inequality. The proof for the right-hand inequality is similar and is thus omitted. Let \(f_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \). Taking the absolute value of \(f_n \), we obtain

\[
|f_n(z)| = \left| z - \sum_{k=j+1}^{\infty} a_k z^k + (-1)^n \sum_{k=1}^{\infty} b_k z^k \right| \leq (1 + |b_1| + |b_2| r + \ldots + |b_j| r^{j-1}) r + \sum_{k=j+1}^{\infty} (|a_k| + |b_k|) r^k
\]

\[
\leq (1 + |b_1| + |b_2| r + \ldots + |b_j| r^{j-1}) r + \sum_{k=j+1}^{\infty} (|a_k| + |b_k|) r^{j+1}
\]

\[
\leq (1 + |b_1| + |b_2| r + \ldots + |b_j| r^{j-1}) r + \sum_{k=j+1}^{\infty} \frac{1 - \alpha}{((j + 1) (1 + \rho) - t(\rho + \alpha)) (j + 1)^n C(\lambda, j + 1)} |a_k|
\]

\[
+ \frac{1 - \alpha}{((j + 1) (1 + \rho) - t(\rho + \alpha)) (j + 1)^n C(\lambda, j + 1)} |b_k| r^{(j+1)}
\]

\[
\leq (1 + |b_1| + |b_2| r + \ldots + |b_j| r^{j-1}) r + \sum_{k=j+1}^{\infty} \frac{1 - \alpha}{((j + 1) (1 + \rho) - t(\rho + \alpha)) (j + 1)^n C(\lambda, j + 1)} |a_k| + \frac{1 - \alpha}{((j + 1) (1 + \rho) - t(\rho + \alpha)) (j + 1)^n C(\lambda, j + 1)} |b_k| r^{(j+1)}
\]

\[
\leq (1 + |b_1| + |b_2| r + \ldots + |b_j| r^{j-1}) r + \left[1 - \frac{(1 + t + 1) \rho + \alpha}{1 - \alpha} |b_1| - \frac{(2(1 + \rho) + t(\rho + \alpha)}{1 - \alpha} |b_2| 2^n C(\lambda, 2) \ldots - \frac{(j(1 + \rho) + t(\rho + \alpha))}{1 - \alpha} |b_j| j^n C(\lambda, j) \right] r^{(j+1)}
\]

\[
\square
\]

4. Convolution, Convex Combination and Extreme Points

In this section, we show that the class \(\overline{G}_H(n, \lambda, j, \alpha, \rho, t) \) is invariant under convolution and convex combination.

For harmonic functions

\[
f_n(z) = z - \sum_{k=j+1}^{\infty} |a_k| z^k + (-1)^n \sum_{k=1}^{\infty} |b_k| z^k
\]

and

\[
F_n(z) = z - \sum_{k=j+1}^{\infty} |A_k| z^k + (-1)^n \sum_{k=1}^{\infty} |B_k| z^k,
\]
the convolution of f_n and F_n is given by

$$(f_n * F_n)(z) = f_n(z) * F_n(z) = z - \sum_{k=j+1}^{\infty} |a_k A_k| z^k + (-1)^n \sum_{k=1}^{\infty} |b_k B_k| z^k. \quad (4.1)$$

Theorem 4.1. For $0 \leq \beta \leq \alpha < 1$, $n, \lambda \in \mathbb{N}_0, j \in \mathbb{N}, \rho \geq 0$, $0 \leq t \leq 1$ let $f_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t)$ and $F_n \in \overline{G}_H(n, \lambda, j, \beta, \rho, t)$. Then $f_n * F_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \subset \overline{G}_H(n, \lambda, j, \beta, \rho, t)$.

Proof. We wish to show that the coefficient of $f_n * F_n$ satisfy the required condition given in Theorem 2.2. For $F_n \in \overline{G}_H(n, \lambda, j, \beta, \rho, t)$, we note that $|A_k| \leq 1$ and $|B_k| \leq 1$. Now, for the convolution function $f_n * F_n$, we obtain

$$\sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |a_k||A_k|$$

$$+ \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |b_k||B_k|$$

$$\leq \sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |a_k|$$

$$+ \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |b_k|$$

$$\leq \sum_{k=j+1}^{\infty} \frac{k(1 + \rho) - t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |a_k|$$

$$+ \sum_{k=1}^{\infty} \frac{k(1 + \rho) + t(\alpha + \rho)}{1 - \alpha} k^n C(\lambda, k) |b_k|$$

$$\leq 1.$$

Since $0 \leq \beta \leq \alpha < 1$ and $f_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t)$. Therefore $f_n * F_n \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \subset \overline{G}_H(n, \lambda, j, \beta, \rho, t)$.

We now examine the convex combination of $\overline{G}_H(n, \lambda, j, \alpha, \rho, t)$.

Let the functions $f_{n_i}(z)$ be defined, for $i = 1, 2, \ldots, m$, by

$$f_{n_i}(z) = z - \sum_{k=j+1}^{\infty} |a_{k,i}| z^k + (-1)^n \sum_{k=1}^{\infty} |b_{k,i}| z^k. \quad (4.2)$$

\[\square\]
Theorem 4.2. Let the functions \(f_n(z) \) defined by (4.2) be in the class \(G_H(n, \lambda, j, \alpha, \rho, t) \) for every \(i = 1, 2, \ldots, m \). Then the functions \(t_i(z) \) defined by
\[
t_i(z) = \sum_{i=1}^{m} c_i f_n(z), \quad 0 \leq c_i \leq 1
\]
are also in the class \(G_H(n, \lambda, j, \alpha, \rho, t) \), where \(\sum_{i=1}^{m} c_i = 1 \).

Proof. According to the definition of \(t_i \), we can write
\[
t_i(z) = z - \sum_{k=j+1}^{\infty} \left(\sum_{i=1}^{m} c_i |a_{k,i}| \right) z^k + (-1)^n \sum_{k=1}^{\infty} \left(\sum_{i=1}^{m} c_i |b_{k,i}| \right) z^k.
\]
Further, since \(f_n(z) \) are in \(G_H(n, \lambda, j, \alpha, \rho, t) \) for every \(i = 1, 2, \ldots, m \), then
\[
\sum_{k=j+1}^{\infty} \left[(k(1+\rho) - t(\alpha + \rho)) \left(\sum_{i=1}^{m} c_i |a_{k,i}| \right) + \sum_{k=1}^{\infty} (k(1+\rho) + t(\alpha + \rho)) \left(\sum_{i=1}^{m} c_i |b_{k,i}| \right) \right] k^n C(\lambda, k) \leq \sum_{i=1}^{m} c_i (1 - \alpha) \leq (1 - \alpha).
\]
Hence the Theorem 4.2 follows.

Next we determine the extreme points of closed convex hulls of \(G_H(n, \lambda, j, \alpha, \rho, t) \) denoted by \(\text{clco} \ G_H(n, \lambda, j, \alpha, \rho, t) \).

Theorem 4.3. Let \(f_n \) be given by (1.4). Then \(f_n \in G_H(n, \lambda, j, \alpha, \rho, t) \), if and only if
\[
f_n(z) = \sum_{k=j}^{\infty} X_k h_k(z) + \sum_{k=1}^{\infty} Y_k g_{n_k}(z),
\]
where
\[
h_j(z) = z, \quad h_k(z) = z - \left(\frac{1 - \alpha}{(k(1+\rho) - t(\alpha + \rho)) k^n C(\lambda, k)} \right) z^k, \quad k = j + 1, j + 2, \ldots.
\]
\[
g_{n_k}(z) = z + (-1)^n \left(\frac{1 - \alpha}{(k(1+\rho) + t(\alpha + \rho)) k^n C(\lambda, k)} \right) z^k, \quad k = 1, 2, 3, \ldots.
\]
and \(\sum_{k=j}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k = 1, \quad X_k \geq 0, \quad Y_k \geq 0 \). In particular, the extreme points of \(G_H(n, \lambda, j, \alpha, \rho, t) \) are \(\{h_k\} \) and \(\{g_{n_k}\} \).
Proof. For the function f_n of the form (4.4) we have

$$f_n(z) = \sum_{k=j}^{\infty} X_k h_k(z) + \sum_{k=1}^{\infty} Y_k g_{nk}(z)$$

$$= z - \sum_{k=j+1}^{\infty} \frac{1 - \alpha}{(k(1 + \rho) - t(\alpha + \rho))k^nC(\lambda, k)} X_k z^k + (-1)^n \sum_{k=1}^{\infty} \frac{1 - \alpha}{(k(1 + \rho) + t(\alpha + \rho))k^nC(\lambda, k)} Y_k z^k$$

Then

$$\sum_{k=j+1}^{\infty} \left(\frac{k(1 + \rho) - t(\alpha + \rho))k^nC(\lambda, k)}{1 - \alpha} \right) |a_k| + \sum_{k=1}^{\infty} \left(\frac{k(1 + \rho) + t(\alpha + \rho))k^nC(\lambda, k)}{1 - \alpha} \right) |b_k|$$

$$= \sum_{k=j+1}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k$$

$$= 1 - X_j \leq 1$$

and so $f_n \in \text{clco} \ G_H(n, \lambda, j, \alpha, \rho, t)$.

Conversely, suppose that $f_n \in \text{clco} \ G_H(n, \lambda, j, \alpha, \rho, t)$. Setting

$$X_k = \left(\frac{1 - \alpha}{(k(1 + \rho) - t(\alpha + \rho))k^nC(\lambda, k)} \right) |a_k|, \quad 0 \leq X_k \leq 1 \quad k = j + 1, j + 2, \ldots$$

$$Y_k = \left(\frac{1 - \alpha}{(k(1 + \rho) + t(\alpha + \rho))k^nC(\lambda, k)} \right) |b_k|, \quad 0 \leq Y_k \leq 1 \quad k = 1, 2, 3, \ldots$$

(4.5)

and $X_j = 1 - \sum_{k=j+1}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k$. Therefore, f_n can be written as

$$f_n(z) = z - \sum_{k=j+1}^{\infty} |a_k| z^k + (-1)^n \sum_{k=1}^{\infty} |b_k| z^k$$

$$= z - \sum_{k=j+1}^{\infty} \left(\frac{1 - \alpha}{(k(1 + \rho) - t(\alpha + \rho))k^nC(\lambda, k)} \right) X_k z^k$$

$$+ (-1)^n \sum_{k=1}^{\infty} \left(\frac{1 - \alpha}{(k(1 + \rho) + t(\alpha + \rho))k^nC(\lambda, k)} \right) Y_k z^k$$

$$= z + \sum_{k=j+1}^{\infty} (h_k(z) - z) X_k + \sum_{k=1}^{\infty} (g_{nk}(z) - z) Y_k$$

$$= \sum_{k=j+1}^{\infty} h_k(z) X_k + \sum_{k=1}^{\infty} g_{nk}(z) Y_k + z \left(1 - \sum_{k=j+1}^{\infty} X_k - \sum_{k=1}^{\infty} Y_k \right)$$

$$= \sum_{k=j}^{\infty} X_k h_k(z) + \sum_{k=1}^{\infty} Y_k g_{nk}(z), \quad \text{as required.}$$

(4.6)

This completes the proof of Theorem 4.3.
5. A FAMILY OF CLASS PRESERVING INTEGRAL OPERATOR

Let \(f(z) = h(z) + g(z) \) be defined by (1.1) then \(F(z) \) defined by the relation

\[
F(z) = c + \frac{1}{z} \int_0^z t^{c-1} h(t) dt + \frac{c+1}{z} \int_0^z t^{c-1} g(t) dt, \quad (c > -1).
\] (5.1)

Theorem 5.1. Let \(f_n(z) = h(z) + g_n(z) \in S_H \) be given by (1.4) and \(f_n(z) \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \) then \(F(z) \) be defined by (5.1) also belong to \(\overline{G}_H(n, \lambda, j, \alpha, \rho, t) \).

Proof. From the representation of (5.1) of \(F(z) \), it follows that

\[
F(z) = z - \sum_{k=1}^{\infty} \left(\frac{c+1}{c+k} a_k z^k + (-1)^n \sum_{k=1}^{\infty} \frac{c+1}{c+k} b_k z^k \right).
\] (5.2)

Since \(f_n(z) \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \), then by Theorem 2.2 we have

\[
\sum_{k=1}^{\infty} \frac{(k(1+\rho) - t(\alpha + \rho))k^n C(\lambda, k)}{1 - \alpha} |a_k| + \sum_{k=1}^{\infty} \frac{(k(1+\rho) + t(\alpha + \rho))k^n C(\lambda, k)}{1 - \alpha} |b_k| \leq 1.
\]

Now

\[
\sum_{k=2}^{\infty} \frac{(k(1+\rho) - t(\alpha + \rho))k^n C(\lambda, k)}{1 - \alpha} |a_k| + \sum_{k=1}^{\infty} \frac{(k(1+\rho) + t(\alpha + \rho))k^n C(\lambda, k)}{1 - \alpha} |b_k|
\]

\[
\leq \sum_{k=2}^{\infty} \frac{(k(1+\rho) - t(\alpha + \rho))k^n C(\lambda, k)}{1 - \alpha} |a_k| + \sum_{k=1}^{\infty} \frac{(k(1+\rho) + t(\alpha + \rho))k^n C(\lambda, k)}{1 - \alpha} |b_k|
\]

\[
\leq 1.
\]

Thus \(F(z) \in \overline{G}_H(n, \lambda, j, \alpha, \rho, t) \). \qed

Acknowledgement

The authors are thankful to the referee for his/her valuable comments and observations which helped in improving the paper.

References

Saurabh Porwal
Department of Mathematics, UIET, CSJM University, Kanpur-208024, (U.P.), India
E-mail address: saurabhjcb@rediffmail.com

Shivam Kumar
Department of Mathematics, UIET, CSJM University, Kanpur-208024, (U.P.), India
E-mail address: s.shivamkumar14@rediffmail.com