COEFFICIENT ESTIMATE OF MA-MINDA TYPE
BI-BAZILEVIĆ FUNCTIONS OF COMPLEX ORDER
INVOLVING SRIVASTAVA-ATTIYA OPERATOR

G. MURUGUSUNDARAMOORTHY, C. SELVARAJ, O. S. BABU

Abstract. In this paper, we introduce and investigate a new subclass of the
function class Σ of bi-univalent functions defined in the open unit disk, which
are associated with the Hurwitz-Lerch zeta function, satisfying subordinate
conditions. Furthermore, we find estimates on the Taylor-Maclaurin coeffi-
cients $|a_2|$ and $|a_3|$ for functions in this new subclass. Several (known or new)
consequences of the results are also pointed out.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$ \hfill (1)

which are analytic in the open unit disk

$$\Delta = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$$

Further, by S we shall denote the class of all functions in A which are univalent in Δ. Some of the important and well-investigated subclasses of the univalent function class S include (for example) the class $S^*(\alpha)$ of starlike functions of order α in Δ and the class $K(\alpha)$ of convex functions of order α in Δ. It is well known that every function $f \in S$ has an inverse f^{-1}, defined by

$$f^{-1}(f(z)) = z \quad (z \in \Delta)$$

and

$$f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); \ r_0(f) \geq \frac{1}{4}\right),$$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots.$$ \hfill (2)

2000 Mathematics Subject Classification. Primary 30C45.

Key words and phrases. Analytic functions; Univalent functions; Bi-univalent functions; Bi-
starlike and bi-convex functions; Bi-Bazilević functions; Hurwitz-Lerch zeta function; Jung-Kim-
Srivastava integral operator; Libera-Bernardi integral operator.

A function $f \in \mathcal{A}$ is said to be bi-univalent in Δ if both $f(z)$ and $f^{-1}(z)$ are univalent in Δ. Let Σ denote the class of bi-univalent functions in Δ given by

$$\Sigma = \{f \in \mathcal{A} : \text{both } f \text{ and } f^{-1} \text{ are univalent in } \Delta \}.$$

An analytic function f is subordinate to an analytic function g, written $f(z) \prec g(z)$, provided there is an analytic function w defined on Δ with $w(0) = 0$ and $|w(z)| < 1$ satisfying $f(z) = g(w(z))$. Ma and Minda unified various subclasses of starlike and convex functions for which either of the quantity $z f'(z)$ is subordinate to a more general superordinate function. For this purpose, they considered an analytic function ϕ with positive real part in the unit disk Δ, $\phi(0) = 1$, $\phi'(0) > 0$, and ϕ maps Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike functions consists of functions $f \in \mathcal{A}$ satisfying the subordination $z f'(z) \prec \phi(z)$. Similarly, the class of Ma-Minda convex functions of functions $f \in \mathcal{A}$ satisfying the subordination $1 + z f''(z) \prec \phi(z)$.

A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f^{-1} are respectively Ma-Minda starlike or convex. These classes are denoted respectively by $\Sigma_{\mathcal{E}}(\phi)$ and $K_{\mathcal{E}}(\phi)$, where $\phi(z)$ is given by

$$\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, \quad (B_1 > 0).$$

The convolution or Hadamard product of two functions $f, h \in \mathcal{A}$ is denoted by $f * h$ and is defined as

$$(f * h)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n,$$ (4)

where $f(z)$ is given by (1) and $h(z) = z + \sum_{n=2}^{\infty} b_n z^n$.

We recall a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (see [25])

$$\Phi(z, s, a) := \sum_{k=0}^{\infty} \frac{z^k}{(k + a)^s} \quad (a \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}; s \in \mathbb{C}, \Re(s) > 1 \text{ and } |z| < 1).$$

Several interesting properties and characteristics of the Hurwitz-Lerch zeta function $\Phi(z, s, a)$ can be found in the recent investigations by Choi and Srivastava [5], Ferreira and Lopez [7], Garg et al [10], Lin and Srivastava [11], Lin et al [17] and others.

For the class \mathcal{A}, Srivastava and Attiya [24] (see also Raducanu and Srivastava [22] and Prajapat and Goyal [21]) introduced and investigated linear operator:

$$\mathcal{J}_{\mu,b} : \mathcal{A} \longrightarrow \mathcal{A}$$

defined internms of the Hadamard product (or convolution) by

$$\mathcal{J}_{\mu,b} f(z) = (G_{\mu,b} * f)(z) \quad (z \in \Delta; \ b \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}; \mu \in \mathbb{C}; f \in \mathcal{A}),$$ (6)

where, for convenience,

$$G_{\mu,b}(z) = (1 + b)\mu[\Phi(z, \mu, b) - b^{-\mu}].$$ (7)

It is easy to observe from (given earlier by [21, 22], [11, 6] and 7) that

$$\mathcal{J}_{\mu,b} f(z) = z + \sum_{k=2}^{\infty} \Theta_k a_k z^k,$$ (8)
where
\[\Theta_k = \left| \frac{1 + b}{k + b} \right| \]
and (throughout this paper unless otherwise mentioned) the parameters \(\mu, b \) are considered as \(\mu \in \mathbb{C} \) and \(b \in \mathbb{C} \setminus \{0, -1, -2, \ldots\} \).

We note that

- For \(\mu = 1 \) and \(b = \nu (\nu > -1) \) generalized Libera-Bernardi integral operator [23]

\[J_{1, \nu} f(z) = \frac{1 + \nu}{z^\nu} \int_0^z t^{\nu-1} f(t) dt \]

\[= z + \sum_{k=2}^{\infty} \left(\frac{\nu + 1}{k + \nu} \right) a_k z^k = \mathcal{L}_\nu f(z). \]

- For \(\mu = \sigma (\sigma > 0) \) and \(b = 1 \), Jung-Kim-Srivastava integral operator [13]

\[J_{\sigma, 1} f(z) = \frac{2^\sigma}{z^{\Gamma(\sigma)}} \int_0^z \left(\log \left(\frac{z}{t} \right) \right)^{\sigma-1} f(t) dt \]

\[= z + \sum_{k=2}^{\infty} \left(\frac{z}{k + 1} \right)^{\sigma} a_k z^k = \mathcal{I}_\sigma f(z) \]

is closely related to some multiplier transformations studied by Flett [8].

Recently there has been triggering interest to study bi-univalent function class \(\Sigma \) and obtained non-sharp coefficient estimates on the first two coefficients \(|a_2| \) and \(|a_3| \) of (1). But the coefficient problem for each of the following Taylor-Maclaurin coefficients:

\[|a_n| \quad (n \in \mathbb{N} \setminus \{1, 2, 3\}; \quad \mathbb{N} := \{1, 2, 3, \ldots\} \]

is still an open problem (see [2, 3, 4, 13, 14, 19, 27]). Many researchers (see [9, 11, 15, 26, 28, 29]) have recently introduced and investigated several interesting subclasses of the bi-univalent function class \(\Sigma \) and they have found non-sharp estimates on the first two Taylor-Maclaurin coefficients \(|a_2| \) and \(|a_3| \).

Several authors have discussed various subfamilies of Bazilević functions of type \(\lambda \) from various perspective. They discussed it from the perspective of convexity, inclusion theorem, radii of starlikeness and convexity boundary rotational problem, subordination just to mention few. The most amazing thing is that, it is difficult to see any of this authors discussing the coefficient inequalities, and coefficient bounds of these subfamilies of Bazilević function most especially when the parameter \(\lambda \) is greater than 1 (\(\lambda \in \mathbb{R} \)). Motivated by the earlier work of Deniz[8] in the present paper we introduce new families of Bazilević functions of complex order [12] of the function class \(\Sigma \), involving Hurwitz-Lerch zeta function, and find estimates on the coefficients \(|a_2| \) and \(|a_3| \), for functions in the new subclasses of function class \(\Sigma \). Several related classes are also considered, and connection to earlier known results are made.
Definition 1. A function $f \in \Sigma$ given by (1) is said to be in the class $S^{\mu,b}_\Sigma(\gamma, \lambda, \phi)$ if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(\frac{z^{1-\lambda}(J_{\mu,b} f(z))'}{|J_{\mu,b} f(z)|^{1-\lambda}} - 1 \right) < \phi(z)$$

(10)

and

$$1 + \frac{1}{\gamma} \left(\frac{w^{1-\lambda}(J_{\mu,b} g(w))'}{|J_{\mu,b} g(w)|^{1-\lambda}} - 1 \right) < \phi(w)$$

(11)

where $\gamma \in \mathbb{C} \setminus \{0\}; \lambda \geq 0; z, w \in \triangle$ and the function g is given by (2).

Example 1. If we set $\phi(z) = \frac{1 + Az}{1 + Bz}, -1 \leq B < A \leq 1$, then the class $S^{\mu,b}_\Sigma(\gamma, \lambda, A, B)$ which is defined as $f \in \Sigma$,

$$1 + \frac{1}{\gamma} \left(\frac{z^{1-\lambda}(J_{\mu,b} f(z))'}{|J_{\mu,b} f(z)|^{1-\lambda}} - 1 \right) < \frac{1 + Az}{1 + Bz},$$

and

$$1 + \frac{1}{\gamma} \left(\frac{w^{1-\lambda}(J_{\mu,b} g(w))'}{|J_{\mu,b} g(w)|^{1-\lambda}} - 1 \right) < \frac{1 + Aw}{1 + Bw}.$$

Example 2. If we set $\phi(z) = \frac{1+(1-2\alpha)z}{1+2z}, 0 \leq \alpha < 1$ then the class $S^{\mu,b}_\Sigma(\gamma, \lambda, \alpha)$ which is defined as $f \in \Sigma$,

$$\Re \left[1 + \frac{1}{\gamma} \left(\frac{z^{1-\lambda}(J_{\mu,b} f(z))'}{|J_{\mu,b} f(z)|^{1-\lambda}} - 1 \right) \right] > \alpha,$$

and

$$\Re \left[1 + \frac{1}{\gamma} \left(\frac{w^{1-\lambda}(J_{\mu,b} g(w))'}{|J_{\mu,b} g(w)|^{1-\lambda}} - 1 \right) \right] > \alpha.$$

On specializing the parameters λ one can state the various new subclasses of Σ as illustrated in the following examples.

Example 3. For $\lambda = 0$ and a function $f \in \Sigma$, given by (1) is said to be in the class $S^{\mu,b}_\Sigma(\gamma, \phi)$ if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(\frac{z(J_{\mu,b} f(z))'}{J_{\mu,b} f(z)} - 1 \right) < \phi(z)$$

(12)

and

$$1 + \frac{1}{\gamma} \left(\frac{w(J_{\mu,b} g(w))'}{J_{\mu,b} g(w)} - 1 \right) < \phi(w)$$

(13)

where $\gamma \in \mathbb{C} \setminus \{0\}; z, w \in \triangle$ and the function g is given by (2).

Example 4. For $\lambda = 1$ and a function $f \in \Sigma$, given by (1) is said to be in the class $\mathcal{H}^{\mu,b}_\Sigma(\gamma, \phi)$ if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(J_{\mu,b} f(z) - 1 \right) < \phi(z)$$

(14)

and

$$1 + \frac{1}{\gamma} \left((J_{\mu,b} g(w))' - 1 \right) < \phi(w)$$

(15)

where $\gamma \in \mathbb{C} \setminus \{0\}; z, w \in \triangle$ and the function g is given by (2).
It is of interest to note that for $\gamma = 1$ the class $S_{\Sigma}^{\mu, b}(\gamma, \lambda, \phi)$ reduces to the following new subclass $B_{\Sigma}^{\mu, b}(\lambda, \phi)$.

Definition 2. A function $f \in \Sigma$ given by (1) is said to be in the class $B_{\Sigma}^{\mu, b}(\lambda, \phi)$ if the following conditions are satisfied:

$$\frac{z^{1-\lambda}(J_{\mu, b}f(z))'}{[J_{\mu, b}f(z)]^{1-\lambda}} \prec \phi(z)$$

(16)

and

$$\frac{w^{1-\lambda}(J_{\mu, b}g(w))'}{[J_{\mu, b}g(w)]^{1-\lambda}} \prec \phi(w)$$

(17)

where $\lambda \geq 0; z, w \in \Delta$ and the function g is given by (2).

For particular values of λ, we have

Example 5. For $\lambda = 0$ and a function $f \in \Sigma$, given by (1) is said to be in the class $B_{\Sigma}^{\mu, b}(0, \phi) \equiv S_{\Sigma}^{*, \mu, b}(\phi)$ if the following conditions are satisfied:

$$\frac{z(J_{\mu, b}f(z))'}{J_{\mu, b}f(z)} \prec \phi(z)$$

(18)

and

$$\frac{w(J_{\mu, b}g(w))'}{J_{\mu, b}g(w)} \prec \phi(w)$$

(19)

where $z, w \in \Delta$ and the function g is given by (2).

Example 6. For $\lambda = 1$ and a function $f \in \Sigma$, given by (1) is said to be in the class $B_{\Sigma}^{\mu, b}(1, \phi) \equiv H_{\Sigma}^{\mu, b}(\phi)$ if the following conditions are satisfied:

$$(J_{\mu, b}f(z))' \prec \phi(z)$$

(20)

and

$$(J_{\mu, b}g(w))' \prec \phi(w)$$

(21)

where $z, w \in \Delta$ and the function g is given by (2).

Remark 3. By setting $\phi(z) = \frac{1+\Theta_{k}}{1+\Theta_{k}}$ for $-1 \leq B < A \leq 1$ (or $\phi(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \leq \alpha < 1$) as mentioned in Example 1 and 2 we state some new analogous subclasses $S_{\Sigma}^{\mu, b}(\gamma, A, B); S_{\Sigma}^{*, \mu, b}(\gamma, \alpha); H_{\Sigma}^{\mu, b}(\gamma, A, B); H_{\Sigma}^{*, \mu, b}(\gamma, A, B); S_{\Sigma}^{*, \mu, b}(\gamma, \alpha); H_{\Sigma}^{*, \mu, b}(\gamma, \alpha)$ for the classes defined in Examples 3 to 6 respectively.

Remark 4. When $J_{0,b}f(z) = f(z)$ (that is $\Theta_{k} = 1, k = 2, 3, \ldots$) the class $S_{\Sigma}^{\mu, b}(\gamma, \lambda, \phi)$ is the class of Ma-Minda type bi-Bazilevič functions of complex order; $S_{\Sigma}^{*, \mu, b}(\gamma, \phi) \equiv S_{\Sigma}^{\mu, b}(\gamma, \lambda, \phi)$, the class of Ma-Minda type bi-starlike functions of complex order; $H_{\Sigma}^{\mu, b}(\gamma, \phi) \equiv H_{\Sigma}^{\mu, b}(\gamma, \lambda, \phi)$, the class of bi-Bazilevič functions of Ma-Minda type [18] the class $S_{\Sigma}^{*, \mu, b}(\phi) \equiv S_{\Sigma}^{\mu, b}(\phi)$, the class of Ma-Minda bi-starlike functions [1] and the class $H_{\Sigma}^{*, \mu, b}(\phi) \equiv H_{\Sigma}^{\mu, b}(\phi)$ [25].

In the following section we find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the above-defined subclasses $S_{\Sigma}^{\mu, b}(\gamma, \lambda, \phi)$ of the function class Σ.

In order to derive our main results, we shall need the following lemma:

Lemma 5. (see [20]) If $p \in \mathcal{P}$, then $|p_k| \leq 2$ for each k, where \mathcal{P} is the family of all functions p analytic in Δ for which $\mathcal{R}(p(z)) > 0$, where $p(z) = 1 + p_1z + p_2z^2 + \cdots$ for $z \in \Delta$.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $S_{\lambda,\beta}^\mu(\gamma, \lambda, \phi)$

We begin by finding the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the class $S_{\lambda,\beta}^\mu(\gamma, \lambda, \phi)$.

Theorem 6. Let the function $f(z)$ given by (1) be in the class $S_{\lambda,\beta}^\mu(\gamma, \lambda, \phi)$. Then

$$|a_2| \leq \frac{|\gamma|B_1 \sqrt{2B_1}}{\sqrt{|\gamma|B_1^2[(\lambda - 1)(\lambda + 2)\Theta_3^2 + 2(\lambda + 2)\Theta_3] - 2(B_2 - B_1)(1 + \lambda)^2\Theta_3^2}}$$

(22)

and

$$|a_3| \leq \frac{|\gamma|B_1}{(\lambda + 2)\Theta_3} + \left(\frac{|\gamma|B_1}{(1 + \lambda)\Theta_3}\right)^2.$$

(23)

Proof. Let $f \in S_{\lambda,\beta}^\mu(\gamma, \lambda, \phi)$ and $g = f^{-1}$. Then there are analytic functions $u, v : \triangle \rightarrow \triangle$ with $u(0) = 0 = v(0)$, satisfying

$$1 + \frac{1}{\gamma} \left(\frac{z^{1+\lambda}(f(z))'}{|f(z)|^{1-\lambda}} - 1 \right) = \phi(u(z))$$

(24)

and

$$1 + \frac{1}{\gamma} \left(\frac{w^{1+\lambda}(g(w))'}{|g(w)|^{1+\lambda}} - 1 \right) = \phi(v(w)).$$

(25)

Define the functions $p(z)$ and $q(z)$ by

$$p(z) := \frac{1 + u(z)}{1 - u(z)} = 1 + p_1z + p_2z^2 + \cdots$$

and

$$q(z) := \frac{1 + v(z)}{1 - v(z)} = 1 + q_1z + q_2z^2 + \cdots$$

or, equivalently,

$$u(z) := \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[p_1z + \left(p_2 - \frac{p_2^2}{2} \right) z^2 + \cdots \right]$$

(26)

and

$$v(z) := \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left[q_1z + \left(q_2 - \frac{q_2^2}{2} \right) z^2 + \cdots \right].$$

(27)

Then $p(z)$ and $q(z)$ are analytic in \triangle with $p(0) = 1 = q(0)$. Since $u, v : \triangle \rightarrow \triangle$, the functions $p(z)$ and $q(z)$ have a positive real part in \triangle, and $|p_1| \leq 2$ and $|q_1| \leq 2$.

Using (26) and (27) in (24) and (25) respectively, we have

$$1 + \frac{1}{\gamma} \left(\frac{z^{1-\lambda}(f(z))'}{|f(z)|^{1-\lambda}} - 1 \right) = \varphi \left(\frac{1}{2} \left[p_1z + \left(p_2 - \frac{p_2^2}{2} \right) z^2 + \cdots \right] \right)$$

(28)

and

$$1 + \frac{1}{\gamma} \left(\frac{w^{1-\lambda}(g(w))'}{|g(w)|^{1-\lambda}} - 1 \right) = \varphi \left(\frac{1}{2} \left[q_1w + \left(q_2 - \frac{q_2^2}{2} \right) w^2 + \cdots \right] \right).$$

(29)

In light of (1) - (3), from (28) and (29), it is evident that

$$1 + \frac{(\lambda + 1)}{\gamma} \Theta_2a_2z + \frac{1}{\gamma} \left[(\lambda + 2)\Theta_3a_3 + \frac{(\lambda - 1)(\lambda + 2)}{2}\Theta_3^2a_2 \right] z^2 + \cdots$$

$$= 1 + \frac{1}{2}B_1p_1z + \frac{1}{2}B_1\left(p_2 - \frac{p_2^2}{2} \right) + \frac{1}{4}B_2p_1^2z^2 + \cdots$$
and
\[1 - \frac{(\lambda + 1)}{\gamma} \Theta_2 a_2 w + \frac{1}{\gamma} \left[-(\lambda + 2)\Theta_3 a_3 + \left(\frac{(\lambda - 1)(\lambda + 2)}{2} \Theta_2^2 + 2(\lambda + 2)\Theta_3 \right) a_2^2 \right] w^2 + \cdots \]
\[= 1 + \frac{1}{2} B_1 q_1 w + \left[\frac{1}{2} B_1 (q_2 - \frac{q_1^2}{2}) + \frac{1}{4} B_2 q_1^2 \right] w^2 + \cdots \]
which yields the following relations.
\[(1 + \lambda)\Theta_2 a_2 = \frac{\gamma}{2} B_1 p_1 \]
\[\left[\frac{(\lambda - 1)(\lambda + 2)}{2} \Theta_2^2 a_2^2 + (\lambda + 2)\Theta_3 a_3 \right] = \frac{\gamma}{2} B_1 (p_2 - \frac{p_1^2}{2}) + \frac{\gamma}{4} B_2 p_1^2 \]
\[-(\lambda + 1)\Theta_2 a_2 = \frac{\gamma}{2} B_1 q_1 \]
and
\[\left[2(\lambda + 2)\Theta_3 + \frac{(\lambda - 1)(\lambda + 2)}{2} \Theta_2^2 \right] a_2^2 - (\lambda + 2)\Theta_3 a_3 \]
\[= \frac{\gamma}{2} B_1 (q_2 - \frac{q_1^2}{2}) + \frac{\gamma}{4} B_2 q_1^2. \]
From (30) and (32), it follows that
\[p_1 = -q_1 \]
and
\[8(\lambda + 1)^2 \Theta_2^2 a_2^2 = \gamma^2 B_1^2 (p_1^2 + q_1^2). \]
Adding (31) and (33), we obtain
\[([\lambda - 1](\lambda + 2)\Theta_2^2 + 2(\lambda + 2)\Theta_3] a_2^2 = \frac{\gamma B_1}{2} (p_2 + q_2) + \frac{\gamma}{4} (B_2 - B_1)(p_1^2 + q_1^2). \]
Using (35) in (36), we get
\[a_2^2 = \frac{\gamma^2 B_1^2 (p_2 + q_2)}{2\gamma B_1^2 ([\lambda - 1](\lambda + 2)\Theta_2^2 + 2(\lambda + 2)\Theta_3] - 4(B_2 - B_1)(1 + \lambda)^2 \Theta_2^2}. \]
Applying Lemma 5 for the coefficients \(p_2 \) and \(q_2 \), we immediately have
\[|a_2|^2 \leq \frac{2|\gamma|^2 B_1^2}{\gamma B_1^2 ([\lambda - 1](\lambda + 2)\Theta_2^2 + 2(\lambda + 2)\Theta_3] - 2(B_2 - B_1)(1 + \lambda)^2 \Theta_2^2}. \]
This gives the bound on \(|a_2|\) as asserted in (22).

Next, in order to find the bound on \(|a_3|\), by subtracting (33) from (31), we get
\[[2(\lambda + 2)\Theta_3 a_3 - 2(\lambda + 2)\Theta_3 a_2^2] = \frac{\gamma B_1}{2} \left[(p_2 - q_2) - \frac{1}{2} (p_1^2 - q_1^2) \right] + \frac{\gamma B_2}{4} (p_1^2 - q_1^2). \]
Using (34) and (35) in (38), we get
\[a_3 = \frac{\gamma B_1 (p_2 - q_2)}{4(\lambda + 2)\Theta_3} + \frac{\gamma^2 B_1^2 (p_1^2 + q_1^2)}{8(1 + \lambda)^2 \Theta_2^2}. \]
Applying Lemma 5 once again for the coefficients \(p_1, q_1, p_2 \) and \(q_2 \), we readily get (23). This completes the proof of Theorem 6.

Putting \(\lambda = 0 \) in Theorem 6, we have the following corollary.
Corollary 7. Let the function \(f(z) \) given by (1) be in the class \(S^{\mu,b}_{\gamma,\phi} \). Then
\[
|a_2| \leq \frac{|\gamma|B_1 \sqrt{B_1}}{\sqrt{|\gamma B_1^2(2\Theta_2 - \Theta_2^2) - (B_2 - B_1)\Theta_2^2|}}
\]
and
\[
|a_3| \leq \frac{|\gamma|B_1}{2\Theta_3} + \left(\frac{|\gamma|B_1}{\Theta_2} \right)^2.
\]

Putting \(\lambda = 1 \) in Theorem 6, we have the following corollary.

Corollary 8. Let the function \(f(z) \) given by (1) be in the class \(H^{\mu,b}_{\gamma,\phi} \). Then
\[
|a_2| \leq \frac{|\gamma|B_1 \sqrt{B_1}}{\sqrt{3|\gamma B_1^2\Theta_3 - 4(B_2 - B_1)\Theta_2^2|}}
\]
and
\[
|a_3| \leq \frac{|\gamma|B_1}{3\Theta_3} + \left(\frac{|\gamma|B_1}{2\Theta_2} \right)^2.
\]

Since \(J_{0,b}f(z) = f(z) \), from Corollaries 7 and 8 we get the following corollaries.

Corollary 9. Let the function \(f(z) \) given by (1) be in the class \(S^*_{\gamma,\phi} \). Then
\[
|a_2| \leq \frac{|\gamma|B_1 \sqrt{B_1}}{\sqrt{|\gamma B_1^2 - (B_2 - B_1)|}}
\]
and
\[
|a_3| \leq \frac{|\gamma|B_1}{2} + (|\gamma|B_1)^2.
\]

Corollary 10. Let the function \(f(z) \) given by (1) be in the class \(H_{\gamma,\phi} \). Then
\[
|a_2| \leq \frac{|\gamma|B_1 \sqrt{B_1}}{\sqrt{3|\gamma B_1^2 - 4(B_2 - B_1)|}}
\]
and
\[
|a_3| \leq \frac{|\gamma|B_1}{3} + \left(\frac{|\gamma|B_1}{2} \right)^2.
\]

Remark 11. Since \(J_{0,b}f(z) = f(z) \) and \(\gamma = 1 \), Theorem 2.1 reduces to Theorem 2.8 of Deniz [6].

3. Corollaries and Consequences

By setting \(\phi(z) = \frac{1 + Az}{1 + Bz} \), \(-1 \leq B < A \leq 1\), in Theorem 6 we state the following theorem.

Theorem 12. Let the function \(f(z) \) given by (1) be in the class \(S^\mu_{\gamma,\lambda,A,B} \). Then
\[
|a_2| \leq \frac{|\gamma|\sqrt{2(A - B)}}{\sqrt{|\gamma(A - B)[(\lambda - 1)(\lambda + 2)\Theta_3^2 + 2(\lambda + 2)\Theta_3 + 2(B + 1)(1 + \lambda)^2\Theta_2^2]|}}
\]
and
\[
|a_3| \leq \frac{|\gamma|(A - B)}{(\lambda + 2)\Theta_3} + \left(\frac{|\gamma|(A - B)}{(1 + \lambda)\Theta_2} \right)^2.
\]

Putting \(\lambda = 0 \) in Theorem 12, we have the following corollary.
Corollary 13. Let the function $f(z)$ given by (1) be in the class $S^{\mu,b}_\Sigma(\gamma, A, B)$. Then
\[
|a_2| \leq \frac{|\gamma|(A - B)}{\sqrt{\gamma(A - B)(2\Theta_3 - \Theta_2^2) + (B + 1)\Theta_2^2}}
\]
and
\[
|a_3| \leq \frac{|\gamma|(A - B)}{2\Theta_3} + \left(\frac{|\gamma|(A - B)}{\Theta_2}\right)^2.
\]

Putting $\lambda = 1$ in Theorem 12, we have the following corollary.

Corollary 14. Let the function $f(z)$ given by (1) be in the class $H^{\mu,b}_\Sigma(\gamma, A, B)$. Then
\[
|a_2| \leq \frac{|\gamma|(A - B)}{\sqrt{3\gamma(A - B)\Theta_3 + 4(B + 1)\Theta_2}}
\]
and
\[
|a_3| \leq \frac{|\gamma|(A - B)}{3\Theta_3} + \left(\frac{|\gamma|(A - B)}{2\Theta_2}\right)^2.
\]

Since $J_{0,b}f(z) = f(z)$, from Corollaries 13 and 14 we get the following corollaries.

Corollary 15. Let the function $f(z)$ given by (1) be in the class $S^{\mu}_\Sigma(\gamma, A, B)$. Then
\[
|a_2| \leq \frac{|\gamma|(A - B)}{\sqrt{3\gamma(A - B) + (B + 1)\Theta_3}}
\]
and
\[
|a_3| \leq \frac{|\gamma|(A - B)}{2} + (|\gamma|(A - B))^2.
\]

Corollary 16. Let the function $f(z)$ given by (1) be in the class $H_\Sigma(\gamma, A, B)$. Then
\[
|a_2| \leq \frac{|\gamma|(A - B)}{\sqrt{3\gamma(A - B) + 4(B + 1)\Theta_2}}
\]
and
\[
|a_3| \leq \frac{|\gamma|(A - B)}{3} + \left(\frac{|\gamma|(A - B)}{2}\right)^2.
\]

Further, by setting $\phi(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \leq \alpha < 1$ in Theorem 6 we get the following result.

Theorem 17. Let the function $f(z)$ given by (1) be in the class $S^{\mu,b}_\Sigma(\gamma, \lambda, \alpha)$. Then
\[
|a_2| \leq \frac{2\sqrt{|\gamma|(1 - \alpha)}}{\sqrt{\lambda - 1)(\lambda + 2)\Theta_3^2 + 2(\lambda + 2)\Theta_3}}
\]
and
\[
|a_3| \leq \frac{2|\gamma|(1 - \alpha)}{(\lambda + 2)\Theta_3} + \left(\frac{2|\gamma|(1 - \alpha)}{(1 + \lambda)\Theta_2}\right)^2.
\]

Putting $\lambda = 0$ in Theorem 17 we have the following corollary.

Corollary 18. Let the function $f(z)$ given by (1) be in the class $S^{\mu,b}_\Sigma(\gamma, \alpha)$. Then
\[
|a_2| \leq \frac{2|\gamma|(1 - \alpha)}{\sqrt{(2\Theta_3 - \Theta_2^2)}}
\]
and
\[|a_3| \leq \frac{|\gamma|(1-\alpha)}{\Theta_3} + \left(\frac{2|\gamma|(1-\alpha)}{\Theta_2} \right)^2. \]

Putting \(\lambda = 1 \) in Theorem 17, we have the following corollary.

Corollary 19. Let the function \(f(z) \) given by (1) be in the class \(\mathcal{H}^{\mu,b}_\Sigma(\gamma,\alpha) \). Then
\[|a_2| \leq \sqrt{\frac{|\gamma|2(1-\alpha)}{3\Theta_3}} \]
and
\[|a_3| \leq \frac{2|\gamma|(1-\alpha)}{3\Theta_3} + \left(\frac{|\gamma|(1-\alpha)}{\Theta_2} \right)^2. \]

Since \(\mathcal{J}_{0,b}f(z) = f(z) \), from Corollaries 18 and 19 we get the following corollaries.

Corollary 20. Let the function \(f(z) \) given by (1) be in the class \(\mathcal{S}_\Sigma^* (\gamma,\alpha) \). Then
\[|a_2| \leq \sqrt{2|\gamma|(1-\alpha)} \]
and
\[|a_3| \leq |\gamma|(1-\alpha) + 4|\gamma|^2(1-\alpha)^2. \]

Corollary 21. Let the function \(f(z) \) given by (1) be in the class \(\mathcal{H}_\Sigma(\gamma,\alpha) \). Then
\[|a_2| \leq \sqrt{\frac{|\gamma|2(1-\alpha)}{3}} \]
and
\[|a_3| \leq \frac{2|\gamma|(1-\alpha)}{3} + |\gamma|^2(1-\alpha)^2. \]

Concluding Remarks: By specializing the parameters \(\mu \) and \(b \), various other interesting corollaries and consequences of our main results (which are asserted by Theorem 6 above) can be derived similarly, hence we omit the details.

Acknowledgements: The authors thank the referees for their insightful suggestions.

References

G. Murugusundaramoorthy
Corresponding Author, School of Advanced Sciences, VIT University, Vellore 632014, India,
E-mail address: gmsmoorthy@yahoo.com

C. Selvaraj
Department of Mathematics, Presidency College (Autonomous), Chennai - 600005, India
E-mail address: pamc9439@yahoo.co.in

O.S. Babu
Department of Mathematics, Dr. Ambedkar Govt. Arts College, Chennai - 600039, India,
E-mail address: osbabu1009@gmail.com